Create modeling_storm_oracle.py
Browse files- modeling_storm_oracle.py +24 -0
modeling_storm_oracle.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import PreTrainedModel
|
| 4 |
+
from .configuration_storm_oracle import StormOracleConfig
|
| 5 |
+
|
| 6 |
+
# ---- import your actual model code ----
|
| 7 |
+
# If your code lives in tornado_predictor.py (as pasted), import from there:
|
| 8 |
+
from .tornado_predictor import TornadoSuperPredictor # adjust if filename differs
|
| 9 |
+
|
| 10 |
+
class StormOracleModel(PreTrainedModel):
|
| 11 |
+
config_class = StormOracleConfig
|
| 12 |
+
|
| 13 |
+
def __init__(self, config: StormOracleConfig):
|
| 14 |
+
super().__init__(config)
|
| 15 |
+
self.model = TornadoSuperPredictor(in_channels=config.in_channels)
|
| 16 |
+
self.post_init() # HF bookkeeping
|
| 17 |
+
|
| 18 |
+
def forward(self, radar_x: torch.Tensor, atmo: dict):
|
| 19 |
+
"""
|
| 20 |
+
radar_x: (B, C, H, W)
|
| 21 |
+
atmo: dict of tensors (cape, wind_shear, helicity, temperature, dewpoint, pressure)
|
| 22 |
+
returns TornadoPredictionBatch (your dataclass)
|
| 23 |
+
"""
|
| 24 |
+
return self.model(radar_x, atmo)
|