Woleek commited on
Commit
bc77b0a
1 Parent(s): 58f6b7c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -6
README.md CHANGED
@@ -2,7 +2,6 @@
2
  license: apache-2.0
3
  base_model: google/vit-base-patch16-224
4
  tags:
5
- - image-classification
6
  - generated_from_trainer
7
  datasets:
8
  - imagefolder
@@ -15,7 +14,7 @@ model-index:
15
  name: Image Classification
16
  type: image-classification
17
  dataset:
18
- name: temp
19
  type: imagefolder
20
  config: default
21
  split: validation
@@ -23,7 +22,7 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.5
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  # vit-base
33
 
34
- This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the temp dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.9220
37
- - Accuracy: 0.5
38
 
39
  ## Model description
40
 
@@ -63,6 +62,9 @@ The following hyperparameters were used during training:
63
 
64
  ### Training results
65
 
 
 
 
66
 
67
 
68
  ### Framework versions
 
2
  license: apache-2.0
3
  base_model: google/vit-base-patch16-224
4
  tags:
 
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
 
14
  name: Image Classification
15
  type: image-classification
16
  dataset:
17
+ name: imagefolder
18
  type: imagefolder
19
  config: default
20
  split: validation
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.75
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
30
 
31
  # vit-base
32
 
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.7729
36
+ - Accuracy: 0.75
37
 
38
  ## Model description
39
 
 
62
 
63
  ### Training results
64
 
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 0.0 | 50.0 | 100 | 0.7729 | 0.75 |
68
 
69
 
70
  ### Framework versions