pamparamm's picture
Q8_0
7ef8dca
metadata
license: apache-2.0
language:
  - ru
tags:
  - generated_from_trainer
base_model: WlappaAI/Mistral-7B-wikipedia_ru_pruned-0.1_merged
model-index:
  - name: dracor-ru-small-lora_merged
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: WlappaAI/Mistral-7B-wikipedia_ru_pruned-0.1_merged
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: ./datasets/ru-dracor
    type: completion
    field: text
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./models/output/dracor_ru_lora

adapter: lora
lora_model_dir:

sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 6
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps:
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

dracor-ru-small-lora_merged

This model is a Q8_0 GGUF merge of WlappaAI/dracor-ru-small-lora together with WlappaAI/Mistral-7B-wikipedia_ru_pruned-0.1_merged. It's trained on Russian DraCor dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1876

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.7921 1.0 1056 1.6606

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.0
  • GGUF 0.9.0