|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0. |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop=0., |
|
proj_drop=0., |
|
use_sdpa=True |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop_prob = proj_drop |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.use_sdpa = use_sdpa |
|
|
|
def forward(self, x, mask=None): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
if self.use_sdpa: |
|
with torch.backends.cuda.sdp_kernel(): |
|
x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.proj_drop_prob) |
|
attn = None |
|
else: |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = (attn @ v) |
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x, attn |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
grid_size=None, |
|
grid_depth=None, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop) |
|
|
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = MLP( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop) |
|
|
|
def forward(self, x, return_attention=False, mask=None): |
|
y, attn = self.attn(self.norm1(x), mask=mask) |
|
if return_attention: |
|
return attn |
|
x = x + y |
|
x = x + self.mlp(self.norm2(x)) |
|
return x |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=12, |
|
qkv_bias=False, |
|
use_sdpa=True |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.kv = nn.Linear(dim, int(dim*2), bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
self.use_sdpa = use_sdpa |
|
|
|
def forward(self, q, x): |
|
B, n, C = q.shape |
|
q = self.q(q).reshape(B, n, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
B, N, C = x.shape |
|
kv = self.kv(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
k, v = kv[0], kv[1] |
|
|
|
if self.use_sdpa: |
|
with torch.backends.cuda.sdp_kernel(): |
|
q = F.scaled_dot_product_attention(q, k, v) |
|
else: |
|
xattn = (q @ k.transpose(-2, -1)) * self.scale |
|
xattn = xattn.softmax(dim=-1) |
|
q = (xattn @ v) |
|
|
|
q = q.transpose(1, 2).reshape(B, n, C) |
|
q = self.proj(q) |
|
|
|
return q |
|
|
|
|
|
class CrossAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.xattn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias) |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer) |
|
|
|
def forward(self, q, x): |
|
y = self.xattn(q, self.norm1(x)) |
|
q = q + y |
|
q = q + self.mlp(self.norm2(q)) |
|
return q |
|
|