WishArdently
commited on
Commit
•
10a0e43
1
Parent(s):
ecf0260
Upload V_JEPA
Browse files- config.json +0 -1
- model.py +37 -10
- model.safetensors +1 -1
- modules.py +183 -0
- patch_embed.py +57 -0
- pos_embs.py +99 -0
- tensors.py +71 -0
- utils.py +23 -0
- vision_transformer.py +324 -0
config.json
CHANGED
@@ -7,7 +7,6 @@
|
|
7 |
"AutoModel": "model.V_JEPA"
|
8 |
},
|
9 |
"ckpt_path": "/home/linanxi/V-JEPA/ckpt/vitl16.pth.tar",
|
10 |
-
"device": "cuda:2",
|
11 |
"model_type": "v-jepa",
|
12 |
"torch_dtype": "float32",
|
13 |
"transformers_version": "4.47.0",
|
|
|
7 |
"AutoModel": "model.V_JEPA"
|
8 |
},
|
9 |
"ckpt_path": "/home/linanxi/V-JEPA/ckpt/vitl16.pth.tar",
|
|
|
10 |
"model_type": "v-jepa",
|
11 |
"torch_dtype": "float32",
|
12 |
"transformers_version": "4.47.0",
|
model.py
CHANGED
@@ -1,10 +1,10 @@
|
|
|
|
1 |
from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
|
2 |
from collections import OrderedDict
|
3 |
-
from
|
|
|
4 |
import torch
|
5 |
|
6 |
-
device = 'cuda:2'
|
7 |
-
|
8 |
class JEPAConfig(PretrainedConfig):
|
9 |
model_type = "v-jepa"
|
10 |
|
@@ -12,13 +12,12 @@ class JEPAConfig(PretrainedConfig):
|
|
12 |
self,
|
13 |
vit_type: str = 'vit_large_16',
|
14 |
ckpt_path: str = None,
|
15 |
-
device: str = 'cuda' if torch.cuda.is_available() else 'cpu',
|
16 |
**kwargs
|
17 |
):
|
18 |
super().__init__(**kwargs)
|
19 |
self.vit_type = vit_type
|
20 |
self.ckpt_path = ckpt_path
|
21 |
-
self.
|
22 |
|
23 |
|
24 |
class V_JEPA(PreTrainedModel):
|
@@ -28,9 +27,9 @@ class V_JEPA(PreTrainedModel):
|
|
28 |
super().__init__(config)
|
29 |
self.config = config
|
30 |
if config.vit_type == 'vit_large_16':
|
31 |
-
self.model = vit_large_16()
|
32 |
elif config.vit_type == 'vit_huge_16':
|
33 |
-
self.model = vit_huge_16()
|
34 |
else:
|
35 |
raise ValueError(f"Unsupported vit_type: {config.vit_type}")
|
36 |
|
@@ -39,14 +38,42 @@ class V_JEPA(PreTrainedModel):
|
|
39 |
|
40 |
def load_checkpoint(self, ckpt_path):
|
41 |
state_dict = OrderedDict()
|
42 |
-
ckpt = torch.load(ckpt_path, weights_only=False, map_location=
|
43 |
for k, v in ckpt.items():
|
44 |
new_key = k.split('.', 1)[-1]
|
45 |
state_dict[new_key] = v
|
46 |
self.model.load_state_dict(state_dict, strict=False)
|
47 |
print("Checkpoint loaded successfully")
|
48 |
|
49 |
-
def forward(self, x):
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unittest.mock import Base
|
2 |
from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
|
3 |
from collections import OrderedDict
|
4 |
+
from transformers.modeling_outputs import BaseModelOutput
|
5 |
+
from .vision_transformer import vit_huge_16, vit_large_16
|
6 |
import torch
|
7 |
|
|
|
|
|
8 |
class JEPAConfig(PretrainedConfig):
|
9 |
model_type = "v-jepa"
|
10 |
|
|
|
12 |
self,
|
13 |
vit_type: str = 'vit_large_16',
|
14 |
ckpt_path: str = None,
|
|
|
15 |
**kwargs
|
16 |
):
|
17 |
super().__init__(**kwargs)
|
18 |
self.vit_type = vit_type
|
19 |
self.ckpt_path = ckpt_path
|
20 |
+
# print(f'V-JEPA Config: {self.vit_type}, {self.ckpt_path}, {self.device}')
|
21 |
|
22 |
|
23 |
class V_JEPA(PreTrainedModel):
|
|
|
27 |
super().__init__(config)
|
28 |
self.config = config
|
29 |
if config.vit_type == 'vit_large_16':
|
30 |
+
self.model = vit_large_16()
|
31 |
elif config.vit_type == 'vit_huge_16':
|
32 |
+
self.model = vit_huge_16()
|
33 |
else:
|
34 |
raise ValueError(f"Unsupported vit_type: {config.vit_type}")
|
35 |
|
|
|
38 |
|
39 |
def load_checkpoint(self, ckpt_path):
|
40 |
state_dict = OrderedDict()
|
41 |
+
ckpt = torch.load(ckpt_path, weights_only=False, map_location='cpu')['encoder']
|
42 |
for k, v in ckpt.items():
|
43 |
new_key = k.split('.', 1)[-1]
|
44 |
state_dict[new_key] = v
|
45 |
self.model.load_state_dict(state_dict, strict=False)
|
46 |
print("Checkpoint loaded successfully")
|
47 |
|
48 |
+
def forward(self, x: torch.tensor):
|
49 |
+
"""forward pass
|
50 |
+
Args:
|
51 |
+
x (torch.tensor): Shape (B, N, C, H, W) or (N, C, H, W)
|
52 |
+
Returns:
|
53 |
+
torch.tensor: Shape (B, N, hidden_size)
|
54 |
+
"""
|
55 |
+
# if len(x.shape) == 5 and x.shape[1] == 9:
|
56 |
+
# x_8T = x[:, :8, :, :, :]
|
57 |
+
# x_1T = x[:, 8, :, :, :].unsqueeze(1)
|
58 |
+
# y_8T = self.forward(x_8T).last_hidden_state
|
59 |
+
# y_1T = self.forward(x_1T).last_hidden_state
|
60 |
+
# output = torch.cat((y_8T, y_1T), dim=1)
|
61 |
+
# return BaseModelOutput(last_hidden_state=output)
|
62 |
+
|
63 |
+
if len(x.shape) == 4:
|
64 |
+
x = x.unsqueeze(0)
|
65 |
+
B, N, C, H, W = x.shape
|
66 |
+
x = x.permute(0, 2, 1, 3, 4) # Shape(B, C, N, H, W)
|
67 |
+
output = self.model(x)
|
68 |
+
output = output.view(B, N, 98, -1) # Shape(B*N, 98, hidden_size)
|
69 |
+
output = output.mean(dim=2) # Shape(B*N, hidden_size)
|
70 |
+
# print("output shape: ", output.shape)
|
71 |
+
return BaseModelOutput(last_hidden_state=output)
|
72 |
|
73 |
|
74 |
+
if __name__ == "__main__":
|
75 |
+
config = JEPAConfig()
|
76 |
+
model = V_JEPA(config)
|
77 |
+
x = torch.randn(2, 8, 3, 224, 224)
|
78 |
+
output = model(x)
|
79 |
+
print(output.shape) # (16, 1024)
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 818904440
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88ebddcc1c98353e2c8a6c4a55800a9c36e6bd609134c446acf06a2b433e074b
|
3 |
size 818904440
|
modules.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class MLP(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
in_features,
|
17 |
+
hidden_features=None,
|
18 |
+
out_features=None,
|
19 |
+
act_layer=nn.GELU,
|
20 |
+
drop=0.
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
out_features = out_features or in_features
|
24 |
+
hidden_features = hidden_features or in_features
|
25 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
26 |
+
self.act = act_layer()
|
27 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
28 |
+
self.drop = nn.Dropout(drop)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.fc1(x)
|
32 |
+
x = self.act(x)
|
33 |
+
x = self.drop(x)
|
34 |
+
x = self.fc2(x)
|
35 |
+
x = self.drop(x)
|
36 |
+
return x
|
37 |
+
|
38 |
+
|
39 |
+
class Attention(nn.Module):
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
dim,
|
43 |
+
num_heads=8,
|
44 |
+
qkv_bias=False,
|
45 |
+
qk_scale=None,
|
46 |
+
attn_drop=0.,
|
47 |
+
proj_drop=0.,
|
48 |
+
use_sdpa=True
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.num_heads = num_heads
|
52 |
+
head_dim = dim // num_heads
|
53 |
+
self.scale = qk_scale or head_dim ** -0.5
|
54 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
55 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
56 |
+
self.proj = nn.Linear(dim, dim)
|
57 |
+
self.proj_drop_prob = proj_drop
|
58 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
59 |
+
self.use_sdpa = use_sdpa
|
60 |
+
|
61 |
+
def forward(self, x, mask=None):
|
62 |
+
B, N, C = x.shape
|
63 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
64 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # [B, num_heads, N, D]
|
65 |
+
|
66 |
+
if self.use_sdpa:
|
67 |
+
with torch.backends.cuda.sdp_kernel():
|
68 |
+
x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.proj_drop_prob)
|
69 |
+
attn = None
|
70 |
+
else:
|
71 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale # [B, num_heads, D, D]
|
72 |
+
attn = attn.softmax(dim=-1)
|
73 |
+
attn = self.attn_drop(attn)
|
74 |
+
x = (attn @ v)
|
75 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
76 |
+
x = self.proj(x)
|
77 |
+
x = self.proj_drop(x)
|
78 |
+
return x, attn
|
79 |
+
|
80 |
+
|
81 |
+
class Block(nn.Module):
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
dim,
|
85 |
+
num_heads,
|
86 |
+
mlp_ratio=4.,
|
87 |
+
qkv_bias=False,
|
88 |
+
qk_scale=None,
|
89 |
+
drop=0.,
|
90 |
+
attn_drop=0.,
|
91 |
+
act_layer=nn.GELU,
|
92 |
+
norm_layer=nn.LayerNorm,
|
93 |
+
grid_size=None,
|
94 |
+
grid_depth=None,
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
self.norm1 = norm_layer(dim)
|
98 |
+
self.attn = Attention(
|
99 |
+
dim,
|
100 |
+
num_heads=num_heads,
|
101 |
+
qkv_bias=qkv_bias,
|
102 |
+
qk_scale=qk_scale,
|
103 |
+
attn_drop=attn_drop,
|
104 |
+
proj_drop=drop)
|
105 |
+
|
106 |
+
self.norm2 = norm_layer(dim)
|
107 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
108 |
+
self.mlp = MLP(
|
109 |
+
in_features=dim,
|
110 |
+
hidden_features=mlp_hidden_dim,
|
111 |
+
act_layer=act_layer,
|
112 |
+
drop=drop)
|
113 |
+
|
114 |
+
def forward(self, x, return_attention=False, mask=None):
|
115 |
+
y, attn = self.attn(self.norm1(x), mask=mask)
|
116 |
+
if return_attention:
|
117 |
+
return attn
|
118 |
+
x = x + y
|
119 |
+
x = x + self.mlp(self.norm2(x))
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class CrossAttention(nn.Module):
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
dim,
|
127 |
+
num_heads=12,
|
128 |
+
qkv_bias=False,
|
129 |
+
use_sdpa=True
|
130 |
+
):
|
131 |
+
super().__init__()
|
132 |
+
self.num_heads = num_heads
|
133 |
+
head_dim = dim // num_heads
|
134 |
+
self.scale = head_dim ** -0.5
|
135 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
136 |
+
self.kv = nn.Linear(dim, int(dim*2), bias=qkv_bias)
|
137 |
+
self.proj = nn.Linear(dim, dim)
|
138 |
+
self.use_sdpa = use_sdpa
|
139 |
+
|
140 |
+
def forward(self, q, x):
|
141 |
+
B, n, C = q.shape
|
142 |
+
q = self.q(q).reshape(B, n, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
143 |
+
|
144 |
+
B, N, C = x.shape
|
145 |
+
kv = self.kv(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
146 |
+
k, v = kv[0], kv[1] # (batch_size, num_heads, seq_len, feature_dim_per_head)
|
147 |
+
|
148 |
+
if self.use_sdpa:
|
149 |
+
with torch.backends.cuda.sdp_kernel():
|
150 |
+
q = F.scaled_dot_product_attention(q, k, v)
|
151 |
+
else:
|
152 |
+
xattn = (q @ k.transpose(-2, -1)) * self.scale
|
153 |
+
xattn = xattn.softmax(dim=-1) # (batch_size, num_heads, query_len, seq_len)
|
154 |
+
q = (xattn @ v)
|
155 |
+
|
156 |
+
q = q.transpose(1, 2).reshape(B, n, C)
|
157 |
+
q = self.proj(q)
|
158 |
+
|
159 |
+
return q
|
160 |
+
|
161 |
+
|
162 |
+
class CrossAttentionBlock(nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
dim,
|
166 |
+
num_heads,
|
167 |
+
mlp_ratio=4.,
|
168 |
+
qkv_bias=False,
|
169 |
+
act_layer=nn.GELU,
|
170 |
+
norm_layer=nn.LayerNorm
|
171 |
+
):
|
172 |
+
super().__init__()
|
173 |
+
self.norm1 = norm_layer(dim)
|
174 |
+
self.xattn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias)
|
175 |
+
self.norm2 = norm_layer(dim)
|
176 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
177 |
+
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
|
178 |
+
|
179 |
+
def forward(self, q, x):
|
180 |
+
y = self.xattn(q, self.norm1(x))
|
181 |
+
q = q + y
|
182 |
+
q = q + self.mlp(self.norm2(q))
|
183 |
+
return q
|
patch_embed.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
|
11 |
+
class PatchEmbed(nn.Module):
|
12 |
+
"""
|
13 |
+
Image to Patch Embedding
|
14 |
+
"""
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
patch_size=16,
|
18 |
+
in_chans=3,
|
19 |
+
embed_dim=768
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
self.patch_size = patch_size
|
23 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
B, C, H, W = x.shape
|
27 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
28 |
+
return x
|
29 |
+
|
30 |
+
|
31 |
+
class PatchEmbed3D(nn.Module):
|
32 |
+
"""
|
33 |
+
Image to Patch Embedding
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
patch_size=16,
|
39 |
+
tubelet_size=2,
|
40 |
+
in_chans=3,
|
41 |
+
embed_dim=768,
|
42 |
+
):
|
43 |
+
super().__init__()
|
44 |
+
self.patch_size = patch_size
|
45 |
+
self.tubelet_size = tubelet_size
|
46 |
+
|
47 |
+
self.proj = nn.Conv3d(
|
48 |
+
in_channels=in_chans,
|
49 |
+
out_channels=embed_dim,
|
50 |
+
kernel_size=(tubelet_size, patch_size, patch_size),
|
51 |
+
stride=(tubelet_size, patch_size, patch_size),
|
52 |
+
)
|
53 |
+
|
54 |
+
def forward(self, x, **kwargs):
|
55 |
+
B, C, T, H, W = x.shape
|
56 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
57 |
+
return x
|
pos_embs.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
def get_3d_sincos_pos_embed(
|
12 |
+
embed_dim,
|
13 |
+
grid_size,
|
14 |
+
grid_depth,
|
15 |
+
cls_token=False,
|
16 |
+
uniform_power=False
|
17 |
+
):
|
18 |
+
"""
|
19 |
+
grid_size: int of the grid height and width
|
20 |
+
grid_depth: int of the grid depth
|
21 |
+
returns:
|
22 |
+
pos_embed: [grid_depth*grid_size*grid_size, embed_dim] (w/o cls_token)
|
23 |
+
or [1+grid_depth*grid_size*grid_size, embed_dim] (w/ cls_token)
|
24 |
+
"""
|
25 |
+
grid_d = np.arange(grid_depth, dtype=float)
|
26 |
+
grid_h = np.arange(grid_size, dtype=float)
|
27 |
+
grid_w = np.arange(grid_size, dtype=float)
|
28 |
+
grid_h, grid_d, grid_w = np.meshgrid(grid_h, grid_d, grid_w) # order of meshgrid is very important for indexing as [d,h,w]
|
29 |
+
|
30 |
+
if not uniform_power:
|
31 |
+
h_embed_dim = embed_dim // 4
|
32 |
+
w_embed_dim = embed_dim // 4
|
33 |
+
d_embed_dim = embed_dim // 2
|
34 |
+
else:
|
35 |
+
h_embed_dim = w_embed_dim = d_embed_dim = int(np.ceil(embed_dim/6)*2)
|
36 |
+
|
37 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(h_embed_dim, grid_h) # (T*H*W, D1)
|
38 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(w_embed_dim, grid_w) # (T*H*W, D2)
|
39 |
+
emb_d = get_1d_sincos_pos_embed_from_grid(d_embed_dim, grid_d) # (T*H*W, D3)
|
40 |
+
pos_embed = np.concatenate([emb_d, emb_h, emb_w], axis=1)
|
41 |
+
pos_embed = pos_embed[:, :embed_dim]
|
42 |
+
if cls_token:
|
43 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
44 |
+
return pos_embed
|
45 |
+
|
46 |
+
|
47 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
48 |
+
"""
|
49 |
+
grid_size: int of the grid height and width
|
50 |
+
returns:
|
51 |
+
pos_embed: [grid_size*grid_size, embed_dim] (w/o cls_token)
|
52 |
+
or [1+grid_size*grid_size, embed_dim] (w/ cls_token)
|
53 |
+
"""
|
54 |
+
grid_h = np.arange(grid_size, dtype=float)
|
55 |
+
grid_w = np.arange(grid_size, dtype=float)
|
56 |
+
grid_w, grid_h = np.meshgrid(grid_w, grid_h) # order of meshgrid is very important for indexing as [h, w]
|
57 |
+
|
58 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid_h) # (H*W, D/2)
|
59 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid_w) # (H*W, D/2)
|
60 |
+
pos_embed = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
61 |
+
if cls_token:
|
62 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
63 |
+
return pos_embed
|
64 |
+
|
65 |
+
|
66 |
+
def get_1d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
67 |
+
"""
|
68 |
+
embed_dim: output dimension for each position
|
69 |
+
grid_size: int of the grid length
|
70 |
+
returns:
|
71 |
+
pos_embed: [grid_size, embed_dim] (w/o cls_token)
|
72 |
+
or [1+grid_size, embed_dim] (w/ cls_token)
|
73 |
+
"""
|
74 |
+
grid = np.arange(grid_size, dtype=float)
|
75 |
+
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid)
|
76 |
+
if cls_token:
|
77 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
78 |
+
return pos_embed
|
79 |
+
|
80 |
+
|
81 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
82 |
+
"""
|
83 |
+
embed_dim: output dimension for each position
|
84 |
+
pos: a list of positions to be encoded: size (M,)
|
85 |
+
returns: (M, D)
|
86 |
+
"""
|
87 |
+
assert embed_dim % 2 == 0
|
88 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
89 |
+
omega /= embed_dim / 2.
|
90 |
+
omega = 1. / 10000**omega # (D/2,)
|
91 |
+
|
92 |
+
pos = pos.reshape(-1) # (M,)
|
93 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
94 |
+
|
95 |
+
emb_sin = np.sin(out) # (M, D/2)
|
96 |
+
emb_cos = np.cos(out) # (M, D/2)
|
97 |
+
|
98 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
99 |
+
return emb
|
tensors.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
|
8 |
+
import math
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from logging import getLogger
|
13 |
+
|
14 |
+
logger = getLogger()
|
15 |
+
|
16 |
+
|
17 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
18 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
19 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
20 |
+
def norm_cdf(x):
|
21 |
+
# Computes standard normal cumulative distribution function
|
22 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
23 |
+
|
24 |
+
with torch.no_grad():
|
25 |
+
# Values are generated by using a truncated uniform distribution and
|
26 |
+
# then using the inverse CDF for the normal distribution.
|
27 |
+
# Get upper and lower cdf values
|
28 |
+
l = norm_cdf((a - mean) / std)
|
29 |
+
u = norm_cdf((b - mean) / std)
|
30 |
+
|
31 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
32 |
+
# [2l-1, 2u-1].
|
33 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
34 |
+
|
35 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
36 |
+
# standard normal
|
37 |
+
tensor.erfinv_()
|
38 |
+
|
39 |
+
# Transform to proper mean, std
|
40 |
+
tensor.mul_(std * math.sqrt(2.))
|
41 |
+
tensor.add_(mean)
|
42 |
+
|
43 |
+
# Clamp to ensure it's in the proper range
|
44 |
+
tensor.clamp_(min=a, max=b)
|
45 |
+
return tensor
|
46 |
+
|
47 |
+
|
48 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
49 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
50 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
51 |
+
|
52 |
+
|
53 |
+
def apply_masks(x, masks):
|
54 |
+
"""
|
55 |
+
:param x: tensor of shape [B (batch-size), N (num-patches), D (feature-dim)]
|
56 |
+
:param masks: list of tensors containing indices of patches [0,N) to keep
|
57 |
+
"""
|
58 |
+
all_x = []
|
59 |
+
for m in masks:
|
60 |
+
mask_keep = m.unsqueeze(-1).repeat(1, 1, x.size(-1))
|
61 |
+
all_x += [torch.gather(x, dim=1, index=mask_keep)]
|
62 |
+
return torch.cat(all_x, dim=0)
|
63 |
+
|
64 |
+
|
65 |
+
def repeat_interleave_batch(x, B, repeat):
|
66 |
+
N = len(x) // B
|
67 |
+
x = torch.cat([
|
68 |
+
torch.cat([x[i*B:(i+1)*B] for _ in range(repeat)], dim=0)
|
69 |
+
for i in range(N)
|
70 |
+
], dim=0)
|
71 |
+
return x
|
utils.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
def apply_masks(x, masks, concat=True):
|
12 |
+
"""
|
13 |
+
:param x: tensor of shape [B (batch-size), N (num-patches), D (feature-dim)]
|
14 |
+
:param masks: list of tensors of shape [B, K] containing indices of K patches in [N] to keep
|
15 |
+
"""
|
16 |
+
all_x = []
|
17 |
+
for m in masks:
|
18 |
+
mask_keep = m.unsqueeze(-1).repeat(1, 1, x.size(-1))
|
19 |
+
all_x += [torch.gather(x, dim=1, index=mask_keep)]
|
20 |
+
if not concat:
|
21 |
+
return all_x
|
22 |
+
|
23 |
+
return torch.cat(all_x, dim=0)
|
vision_transformer.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
|
8 |
+
import math
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
|
14 |
+
from .patch_embed import PatchEmbed, PatchEmbed3D
|
15 |
+
from .modules import Block
|
16 |
+
from .pos_embs import get_2d_sincos_pos_embed, get_3d_sincos_pos_embed
|
17 |
+
from .tensors import trunc_normal_
|
18 |
+
from .utils import apply_masks
|
19 |
+
|
20 |
+
|
21 |
+
class VisionTransformer(nn.Module):
|
22 |
+
""" Vision Transformer """
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
img_size=224,
|
26 |
+
patch_size=16,
|
27 |
+
num_frames=1,
|
28 |
+
tubelet_size=2,
|
29 |
+
in_chans=3,
|
30 |
+
embed_dim=768,
|
31 |
+
depth=12,
|
32 |
+
num_heads=12,
|
33 |
+
mlp_ratio=4.0,
|
34 |
+
qkv_bias=True,
|
35 |
+
qk_scale=None,
|
36 |
+
drop_rate=0.0,
|
37 |
+
attn_drop_rate=0.0,
|
38 |
+
norm_layer=nn.LayerNorm,
|
39 |
+
init_std=0.02,
|
40 |
+
out_layers=None,
|
41 |
+
uniform_power=False,
|
42 |
+
**kwargs
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.num_features = self.embed_dim = embed_dim
|
46 |
+
self.num_heads = num_heads
|
47 |
+
self.out_layers = out_layers
|
48 |
+
|
49 |
+
self.input_size = img_size
|
50 |
+
self.patch_size = patch_size
|
51 |
+
|
52 |
+
self.num_frames = num_frames
|
53 |
+
self.tubelet_size = tubelet_size
|
54 |
+
self.is_video = num_frames > 1
|
55 |
+
|
56 |
+
grid_size = self.input_size // self.patch_size
|
57 |
+
grid_depth = self.num_frames // self.tubelet_size
|
58 |
+
|
59 |
+
# Tokenize pixels with convolution
|
60 |
+
if self.is_video:
|
61 |
+
self.patch_embed = PatchEmbed3D(
|
62 |
+
patch_size=patch_size,
|
63 |
+
tubelet_size=tubelet_size,
|
64 |
+
in_chans=in_chans,
|
65 |
+
embed_dim=embed_dim)
|
66 |
+
self.num_patches = (
|
67 |
+
(num_frames // tubelet_size)
|
68 |
+
* (img_size // patch_size)
|
69 |
+
* (img_size // patch_size)
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
self.patch_embed = PatchEmbed(
|
73 |
+
patch_size=patch_size,
|
74 |
+
in_chans=in_chans,
|
75 |
+
embed_dim=embed_dim)
|
76 |
+
self.num_patches = (
|
77 |
+
(img_size // patch_size)
|
78 |
+
* (img_size // patch_size)
|
79 |
+
)
|
80 |
+
|
81 |
+
# Position embedding
|
82 |
+
self.uniform_power = uniform_power
|
83 |
+
self.pos_embed = None
|
84 |
+
self.pos_embed = nn.Parameter(
|
85 |
+
torch.zeros(1, self.num_patches, embed_dim),
|
86 |
+
requires_grad=False)
|
87 |
+
|
88 |
+
# Attention Blocks
|
89 |
+
self.blocks = nn.ModuleList([
|
90 |
+
Block(
|
91 |
+
dim=embed_dim,
|
92 |
+
num_heads=num_heads,
|
93 |
+
mlp_ratio=mlp_ratio,
|
94 |
+
qkv_bias=qkv_bias,
|
95 |
+
qk_scale=qk_scale,
|
96 |
+
drop=drop_rate,
|
97 |
+
act_layer=nn.GELU,
|
98 |
+
grid_size=grid_size,
|
99 |
+
grid_depth=grid_depth,
|
100 |
+
attn_drop=attn_drop_rate,
|
101 |
+
norm_layer=norm_layer)
|
102 |
+
for i in range(depth)])
|
103 |
+
self.norm = norm_layer(embed_dim)
|
104 |
+
|
105 |
+
# ------ initialize weights
|
106 |
+
if self.pos_embed is not None:
|
107 |
+
self._init_pos_embed(self.pos_embed.data) # sincos pos-embed
|
108 |
+
self.init_std = init_std
|
109 |
+
self.apply(self._init_weights)
|
110 |
+
self._rescale_blocks()
|
111 |
+
|
112 |
+
def _init_pos_embed(self, pos_embed):
|
113 |
+
embed_dim = pos_embed.size(-1)
|
114 |
+
grid_size = self.input_size // self.patch_size
|
115 |
+
if self.is_video:
|
116 |
+
grid_depth = self.num_frames // self.tubelet_size
|
117 |
+
sincos = get_3d_sincos_pos_embed(
|
118 |
+
embed_dim,
|
119 |
+
grid_size,
|
120 |
+
grid_depth,
|
121 |
+
cls_token=False,
|
122 |
+
uniform_power=self.uniform_power
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
sincos = get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False)
|
126 |
+
pos_embed.copy_(torch.from_numpy(sincos).float().unsqueeze(0))
|
127 |
+
|
128 |
+
def _init_weights(self, m):
|
129 |
+
if isinstance(m, nn.Linear):
|
130 |
+
trunc_normal_(m.weight, std=self.init_std)
|
131 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
132 |
+
nn.init.constant_(m.bias, 0)
|
133 |
+
elif isinstance(m, nn.LayerNorm):
|
134 |
+
nn.init.constant_(m.bias, 0)
|
135 |
+
nn.init.constant_(m.weight, 1.0)
|
136 |
+
elif isinstance(m, nn.Conv2d):
|
137 |
+
trunc_normal_(m.weight, std=self.init_std)
|
138 |
+
if m.bias is not None:
|
139 |
+
nn.init.constant_(m.bias, 0)
|
140 |
+
elif isinstance(m, nn.Conv3d):
|
141 |
+
trunc_normal_(m.weight, std=self.init_std)
|
142 |
+
if m.bias is not None:
|
143 |
+
nn.init.constant_(m.bias, 0)
|
144 |
+
|
145 |
+
def _rescale_blocks(self):
|
146 |
+
def rescale(param, layer_id):
|
147 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
148 |
+
|
149 |
+
for layer_id, layer in enumerate(self.blocks):
|
150 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
151 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
152 |
+
|
153 |
+
def get_num_layers(self):
|
154 |
+
return len(self.blocks)
|
155 |
+
|
156 |
+
def no_weight_decay(self):
|
157 |
+
return {}
|
158 |
+
|
159 |
+
def forward(self, x, masks=None):
|
160 |
+
"""
|
161 |
+
:param x: input image/video
|
162 |
+
:param masks: indices of patch tokens to mask (remove)
|
163 |
+
"""
|
164 |
+
if masks is not None and not isinstance(masks, list):
|
165 |
+
masks = [masks]
|
166 |
+
|
167 |
+
# Tokenize input
|
168 |
+
pos_embed = self.pos_embed
|
169 |
+
if pos_embed is not None:
|
170 |
+
pos_embed = self.interpolate_pos_encoding(x, pos_embed)
|
171 |
+
x = self.patch_embed(x)
|
172 |
+
if pos_embed is not None:
|
173 |
+
x += pos_embed
|
174 |
+
B, N, D = x.shape
|
175 |
+
|
176 |
+
# Mask away unwanted tokens (if masks provided)
|
177 |
+
if masks is not None:
|
178 |
+
x = apply_masks(x, masks)
|
179 |
+
masks = torch.cat(masks, dim=0)
|
180 |
+
|
181 |
+
# Fwd prop
|
182 |
+
outs = []
|
183 |
+
for i, blk in enumerate(self.blocks):
|
184 |
+
x = blk(x, mask=masks)
|
185 |
+
if self.out_layers is not None and i in self.out_layers:
|
186 |
+
outs.append(self.norm(x))
|
187 |
+
|
188 |
+
if self.out_layers is not None:
|
189 |
+
return outs
|
190 |
+
|
191 |
+
if self.norm is not None:
|
192 |
+
x = self.norm(x)
|
193 |
+
|
194 |
+
return x
|
195 |
+
|
196 |
+
def interpolate_pos_encoding(self, x, pos_embed):
|
197 |
+
|
198 |
+
_, N, dim = pos_embed.shape
|
199 |
+
|
200 |
+
if self.is_video:
|
201 |
+
|
202 |
+
# If pos_embed already corret size, just return
|
203 |
+
_, _, T, H, W = x.shape
|
204 |
+
if H == self.input_size and W == self.input_size and T == self.num_frames:
|
205 |
+
return pos_embed
|
206 |
+
|
207 |
+
# Convert depth, height, width of input to be measured in patches
|
208 |
+
# instead of pixels/frames
|
209 |
+
T = T // self.tubelet_size
|
210 |
+
H = H // self.patch_size
|
211 |
+
W = W // self.patch_size
|
212 |
+
|
213 |
+
# Compute the initialized shape of the positional embedding measured
|
214 |
+
# in patches
|
215 |
+
N_t = self.num_frames // self.tubelet_size
|
216 |
+
N_h = N_w = self.input_size // self.patch_size
|
217 |
+
assert N_h * N_w * N_t == N, 'Positional embedding initialized incorrectly'
|
218 |
+
|
219 |
+
# Compute scale factor for spatio-temporal interpolation
|
220 |
+
scale_factor = (T/N_t, H/N_h, W/N_w)
|
221 |
+
|
222 |
+
pos_embed = nn.functional.interpolate(
|
223 |
+
pos_embed.reshape(1, N_t, N_h, N_w, dim).permute(0, 4, 1, 2, 3),
|
224 |
+
scale_factor=scale_factor,
|
225 |
+
mode='trilinear')
|
226 |
+
pos_embed = pos_embed.permute(0, 2, 3, 4, 1).view(1, -1, dim)
|
227 |
+
return pos_embed
|
228 |
+
|
229 |
+
else:
|
230 |
+
|
231 |
+
# If pos_embed already corret size, just return
|
232 |
+
_, _, H, W = x.shape
|
233 |
+
if H == self.input_size and W == self.input_size:
|
234 |
+
return pos_embed
|
235 |
+
|
236 |
+
# Compute scale factor for spatial interpolation
|
237 |
+
npatch = (H // self.patch_size) * (W // self.patch_size)
|
238 |
+
scale_factor = math.sqrt(npatch / N)
|
239 |
+
|
240 |
+
pos_embed = nn.functional.interpolate(
|
241 |
+
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
|
242 |
+
scale_factor=scale_factor,
|
243 |
+
mode='bicubic')
|
244 |
+
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
245 |
+
return pos_embed
|
246 |
+
|
247 |
+
|
248 |
+
def vit_tiny(patch_size=16, **kwargs):
|
249 |
+
model = VisionTransformer(
|
250 |
+
patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4,
|
251 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
252 |
+
return model
|
253 |
+
|
254 |
+
|
255 |
+
def vit_small(patch_size=16, **kwargs):
|
256 |
+
model = VisionTransformer(
|
257 |
+
patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,
|
258 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
259 |
+
return model
|
260 |
+
|
261 |
+
|
262 |
+
def vit_base(patch_size=16, **kwargs):
|
263 |
+
model = VisionTransformer(
|
264 |
+
patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
265 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
266 |
+
return model
|
267 |
+
|
268 |
+
|
269 |
+
def vit_large(patch_size=16, **kwargs):
|
270 |
+
model = VisionTransformer(
|
271 |
+
patch_size=patch_size, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4,
|
272 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
273 |
+
return model
|
274 |
+
|
275 |
+
def vit_huge(patch_size=16, **kwargs):
|
276 |
+
model = VisionTransformer(
|
277 |
+
patch_size=patch_size, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4,
|
278 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
279 |
+
return model
|
280 |
+
|
281 |
+
|
282 |
+
def vit_giant(patch_size=16, **kwargs):
|
283 |
+
model = VisionTransformer(
|
284 |
+
patch_size=patch_size, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11,
|
285 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
286 |
+
return model
|
287 |
+
|
288 |
+
|
289 |
+
def vit_gigantic(patch_size=14, **kwargs):
|
290 |
+
model = VisionTransformer(
|
291 |
+
patch_size=patch_size, embed_dim=1664, depth=48, num_heads=16, mpl_ratio=64/13,
|
292 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs
|
293 |
+
)
|
294 |
+
return model
|
295 |
+
|
296 |
+
|
297 |
+
VIT_EMBED_DIMS = {
|
298 |
+
'vit_tiny': 192,
|
299 |
+
'vit_small': 384,
|
300 |
+
'vit_base': 768,
|
301 |
+
'vit_large': 1024,
|
302 |
+
'vit_huge': 1280,
|
303 |
+
'vit_giant': 1408,
|
304 |
+
'vit_gigantic': 1664,
|
305 |
+
}
|
306 |
+
|
307 |
+
################
|
308 |
+
### Video Encoders ###
|
309 |
+
def vit_large_16(patch_size=16, num_frames=16,**kwargs):
|
310 |
+
model = VisionTransformer(
|
311 |
+
patch_size=patch_size, embed_dim=1024, depth=16, num_heads=16, mlp_ratio=4,
|
312 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), num_frames=num_frames,**kwargs)
|
313 |
+
return model
|
314 |
+
|
315 |
+
def vit_huge_16(patch_size=16, num_frames=16,**kwargs):
|
316 |
+
model = VisionTransformer(
|
317 |
+
patch_size=patch_size, embed_dim=1280, depth=16, num_heads=16, mlp_ratio=4,
|
318 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), num_frames=num_frames,**kwargs)
|
319 |
+
return model
|
320 |
+
################
|
321 |
+
|
322 |
+
if __name__ == '__main__':
|
323 |
+
model = vit_large_16()
|
324 |
+
print('Right.')
|