pkudavid commited on
Commit
75110a3
·
1 Parent(s): 8f495f4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -81
README.md CHANGED
@@ -1,34 +1,41 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
3
  ---
4
 
5
- ## CodeShell
6
 
7
- CodeShell 是[北京大学知识计算实验室](http://se.pku.edu.cn/kcl/)与蚌壳智能科技联合研发的大规模预训练代码语言模型基座。
8
 
9
- CodeShell的主要特点包括:
10
 
11
- * 性能强大:7B规模代码基座大模型,超过同等规模的最强基座模型(如CodeLlama-7B)
12
- * 训练高效:基于高效的数据治理体系,冷启动训练500B高质量数据
13
- * 体系完整:模型与IDE插件全栈技术体系开源
14
- * 轻量快速:支持本地C++部署,提供轻量的本地化解决方案
15
- * 评测全面:提供支持完整项目上下文的代码多任务评测体系(即将开源)
16
 
17
- 本次开源的模型和工具列表如下:
 
 
 
 
18
 
19
- - CodeShell Base
20
- - CodeShell Chat
21
- - CodeShell Chat 4bit
22
- - C/C++本地化部署工具
23
- - VS Code插件
24
- - JetBrains插件
25
 
26
-
27
- ## Model Use
28
 
29
  ### Code Generation
30
 
31
- Codeshell 提供了Hugging Face格式的模型,开发者可以通过下列代码快速载入并使用Codeshell。
 
 
32
 
33
  ```python
34
  import torch
@@ -44,89 +51,71 @@ print(tokenizer.decode(outputs[0]))
44
 
45
  CodeShell 支持Fill-in-the-Middle模式,从而更好的支持软件开发过程。
46
 
47
- ```
 
 
48
  input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
49
  inputs = tokenizer(input_text, return_tensors='pt').cuda()
50
  outputs = model.generate(inputs)
51
  print(tokenizer.decode(outputs[0]))
52
  ```
53
 
54
- ## Model Quantization
55
-
56
- CodeShell 支持4 bit/8 bit量化,4 bit量化后,占用显存大小约6G。
57
-
58
- ```
59
- from transformers import AutoModelForCausalLM, AutoTokenizer
60
- tokenizer = AutoTokenizer.from_pretrained("codeshell", trust_remote_code=True)
61
- model = AutoModelForCausalLM.from_pretrained("codeshell", trust_remote_code=True)
62
- model = model.quantize(4).cuda()
63
-
64
- inputs = tokenizer('def print_hello_world():', return_tensors='pt').cuda()
65
- outputs = model.generate(inputs)
66
- print(tokenizer.decode(outputs[0]))
67
- ```
68
-
69
- ## CodeShell IDE Plugin
70
-
71
- ### Web API
72
-
73
- CodeShell提供了Web API部署工具,为IDE插件提供API支持。
74
-
75
- ```
76
- git clone git@github.com:WisdomShell/codeshell.git
77
- cd codeshell
78
- python api.py
79
- ```
80
 
81
- CodeShell提供了C/C++版本的推理支持,在没有GPU的个人PC上也能高效使用。开发者可以根据本地环境进行编译,详见[C/C++本地化部署工具]()。编译完成后,可以通过下列命令启动Web API服务。
82
 
83
- ```
84
- ./server -m codeshell.gguf
85
- ```
86
 
87
- 部署完成后,开发者可以通过Web API进行模型推理:
88
 
89
- ```
90
- curl --location 'http://127.0.0.1:8080/completion' --header 'Content-Type: application/json' --data '{"messages": {"content": "用python写个hello world"}, "temperature": 0.2, "stream": true}'
91
- ```
92
 
93
- ### VS Code Plugin
 
 
 
 
 
 
 
 
94
 
95
- CodeShell提供 [VS Code插件](),开发者可以通过插件进行代码补全、代码问答等操作。VS Code 插件也已开源,插件相关问题欢迎在[VS Code插件仓库]()中讨论。
96
 
97
- ## Model Details
98
 
99
- - 模型架构
100
- - Architecture: GPT-2
101
- - Attention: Grouped-Query Attention with Flash Attention 2
102
- - Position embedding: [Rotary Position Embedding](RoFormer: Enhanced Transformer with Rotary Position Embedding)
103
- - Precision: bfloat16
104
- - 超参数
105
- - n_layer: 42
106
- - n_embd: 4096
107
- - n_inner: 16384
108
- - n_head: 32
109
- - num_query_groups: 8
110
- - seq-length: 8192
111
- - vocab_size: 70144
112
-
113
- Code Shell使用GPT-2作为基础架构,并使用Grouped-Query Attention、RoPE相对位置编码等技术。
114
 
115
- ## Evaluation
116
 
117
- 我们选取了目前最流行的两个代码评测数据集对模型进行评估,与目前最先进的两个7b代码大模型CodeLllamaStarcoder相比,Codeshell 取得了最优的成绩。具体评测结果如下。
118
 
119
  ### Pass@1
120
- | 任务 | codeshell-7B | codellama-7B | starcoderbase-7B |
121
  | ------- | --------- | --------- | --------- |
122
- | humaneval | **33.48** | 29.44 | 27.80 |
123
- | mbpp | **39.08** | 37.60 | 34.16 |
124
- | multiple-java | **29.56** | 29.24 | 24.30 |
125
- | multiple-js | **33.60** | 31.30 | 27.02 |
126
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
  # License
129
 
130
- 本仓库开源的模型遵循[Apache 2.0 许可证](https://www.apache.org/licenses/LICENSE-2.0),对学术研究完全开放,若需要商用,开发者可发送邮件进行申请,得到书面授权后方可使用。联系邮箱:[wye@pku.edu.cn](mailto:wye@pku.edu.cn)
 
 
 
131
 
132
 
 
1
  ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - codeshell
7
+ - wisdomshell
8
+ - pku-kcl
9
+ - openbankai
10
  ---
11
 
12
+ # CodeShell
13
 
14
+ CodeShell是[北京大学知识计算实验室](http://se.pku.edu.cn/kcl/)与蚌壳智能科技联合研发的多语言代码大模型基座。CodeShell具有70亿参数,在五千亿Tokens进行了训练,上下文窗口长度为8194。在权威的代码评估Benchmark(HumanEval与MBPP)上,CodeShell取得同等规模最好的性能。与此同时,我们提供了与CodeShell配套的部署方案与IDE插件,请参考代码库[CodeShell](https://github.com/WisdomShell/codeshell)。
15
 
16
+ CodeShell is a multi-language code LLM jointly developed by the [Knowledge Computing Lab](http://se.pku.edu.cn/kcl/) of Peking University and Bangke Intelligence Technology. CodeShell has 7 billion parameters and was trained on 500 billion tokens with a context window length of 8194. On authoritative code evaluation benchmarks (HumanEval and MBPP), CodeShell achieves the best performance of its scale. Meanwhile, we provide deployment solutions and IDE plugins that complement CodeShell. Please refer to the [CodeShell code repository](https://github.com/WisdomShell/codeshell) for more details."
17
 
18
+ ## Main Characteristics of CodeShell
 
 
 
 
19
 
20
+ * **强大的性能**:CodelShell在HumanEval和MBPP上达到了7B代码基座大模型的最优性能
21
+ * **完整的体系**:除了代码大模型,同时开源IDE(VS Code与JetBrains)插件,形成开源的全栈技术体系
22
+ * **轻量化部署**:支持本地C++部署,提供轻量快速的本地化软件开发助手解决方案
23
+ * **全面的评测**:提供支持完整项目上下文、覆盖代码生成、代码缺陷检测与修复、测试用例生成等常见软件开发活动的多任务评测体系(即将开源)
24
+ * **高效的训练**:基于高效的数据治理体系,CodeShell在完全冷启动情况下,只训练了五千亿Token即获得了优异的性能
25
 
26
+ * **Powerful Performance**: CodeShell achieves optimal performance for a 7B code base model on HumanEval and MBPP.
27
+ * **Complete Ecosystem**: In addition to the mega code model, open-source IDE plugins (for VS Code and JetBrains) are also available, forming a comprehensive open-source full-stack technology system.
28
+ * **Lightweight Deployment**: Supports local C++ deployment, offering a lightweight and fast localized software development assistant solution.
29
+ * **Comprehensive Evaluation**: Provides a multi-task evaluation system that supports full project context, covering code generation, code defect detection and repair, test case generation, and other common software development activities (to be open-sourced soon).
30
+ * **Efficient Training**: Based on an efficient data governance system, CodeShell, even when starting from scratch, achieved outstanding performance with training on just 500 trillion tokens.
 
31
 
32
+ ## Quickstart
 
33
 
34
  ### Code Generation
35
 
36
+ Codeshell 提供了Hugging Face格式的模型,开发者可以通过下列代码加载并使用。
37
+
38
+ Codeshell offers a model in the Hugging Face format. Developers can load and use it with the following code.
39
 
40
  ```python
41
  import torch
 
51
 
52
  CodeShell 支持Fill-in-the-Middle模式,从而更好的支持软件开发过程。
53
 
54
+ CodeShell supports the Fill-in-the-Middle mode, thereby better facilitating the software development process.
55
+
56
+ ```python
57
  input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
58
  inputs = tokenizer(input_text, return_tensors='pt').cuda()
59
  outputs = model.generate(inputs)
60
  print(tokenizer.decode(outputs[0]))
61
  ```
62
 
63
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
 
65
 
66
+ Code Shell使用GPT-2作为基础架构,采用Grouped-Query Attention、RoPE相对位置编码等技术。
 
 
67
 
68
+ Code Shell uses GPT-2 as its foundational architecture and incorporates technologies such as Grouped-Query Attention and RoPE relative position encoding.
69
 
 
 
 
70
 
71
+ | Hyper-parameter | Value |
72
+ |---|---|
73
+ | n_layer | 42 |
74
+ | n_embd | 4096 |
75
+ | n_inner | 16384 |
76
+ | n_head | 32 |
77
+ | num_query_groups | 8 |
78
+ | seq-length | 8192 |
79
+ | vocab_size | 70144 |
80
 
 
81
 
82
+ ## Evaluation
83
 
84
+ 我们选取了目前最流行的两个代码评测数据集(HumanEval与MBPP)对模型进行评估,与目前最先进的两个7b代码大模型CodeLllama与Starcoder相比,Codeshell 取得了最优的成绩。具体评测结果如下。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
 
86
 
87
+ We selected the two most popular code evaluation datasets currently available (HumanEval and MBPP) to assess the model. Compared to the two most advanced 7b LLM for code, CodeLllama and Starcoder, Codeshell achieved the best results. The specific evaluation results are as follows.
88
 
89
  ### Pass@1
90
+ | Task | codeshell | codellama-7B | starcoderbase-7B |
91
  | ------- | --------- | --------- | --------- |
92
+ | humaneval | 33.48 | 29.44 | 27.80 |
93
+ | mbpp | 39.08 | 37.60 | 34.16 |
94
+ | multiple-java | 29.56 | 29.24 | 24.30 |
95
+ | multiple-js | 33.60 | 31.30 | 27.02 |
96
+ | multiple-r | 20.99 | 18.57 | 14.29 |
97
+ | multiple-rkt | 12.48 | 12.55 | 10.43 |
98
+ | multiple-cpp | 28.20 | 27.33 | 23.04 |
99
+ | multiple-cs | 22.34 | 20.38 | 18.99 |
100
+ | multiple-d | 8.59 | 11.60 | 8.08 |
101
+ | multiple-go | 71.69 | 75.91 | 73.83 |
102
+ | multiple-jl | 20.63 | 25.28 | 22.96 |
103
+ | multiple-lua | 22.92 | 30.50 | 22.92 |
104
+ | multiple-php | 30.43 | 25.96 | 22.11 |
105
+ | multiple-pl | 15.65 | 17.45 | 16.40 |
106
+ | multiple-py | 33.54 | 29.25 | 28.82 |
107
+ | multiple-rb | 25.71 | 30.06 | 18.51 |
108
+ | multiple-rs | 26.86 | 25.90 | 22.82 |
109
+ | multiple-swift | 25.00 | 25.32 | 15.70 |
110
+ | multiple-ts | 33.90 | 32.64 | 27.48 |
111
+ | multiple-sh | 8.42 | 9.75 | 7.09 |
112
+ | multiple-scala | 22.56 | 24.50 | 19.12 |
113
 
114
  # License
115
 
116
+ 本仓库开源的模型遵循[Apache 2.0 许可证](https://www.apache.org/licenses/LICENSE-2.0),对学术研究完全开放,若需要商用,开发者可发送邮件进行申请,得到书面授权后即可使用。联系邮箱:[wye@pku.edu.cn](mailto:wye@pku.edu.cn)
117
+
118
+
119
+ The model open-sourced in this repository follows the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). It is fully open for academic research. For commercial use, developers can send an email to apply. Once written authorization is obtained, it can be used. Contact email: [wye@pku.edu.cn](mailto:wye@pku.edu.cn).
120
 
121