ruixie commited on
Commit
1c79ab7
1 Parent(s): 02325f0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -11,7 +11,7 @@ tags:
11
 
12
  # CodeShell
13
 
14
- CodeShell是[北京大学知识计算实验室](http://se.pku.edu.cn/kcl/)联合四川天府银行AI团队研发的多语言代码大模型基座。CodeShell具有70亿参数,在五千亿Tokens进行了训练,上下文窗口长度为8194。在权威的代码评估Benchmark(HumanEval与MBPP)上,CodeShell取得同等规模最好的性能。与此同时,我们提供了与CodeShell配套的部署方案与IDE插件,请参考代码库[CodeShell](https://github.com/WisdomShell/codeshell)。同时,为了方便中国用户下载,我们在modelscope中也上传了对应版本,国内用户可以访问[CodeShell-7B国内地址](https://modelscope.cn/models/WisdomShell/CodeShell-7B/summary)。本仓库为CodeShell-7B预训练模型仓库。
15
 
16
  CodeShell is a multi-language code LLM developed by the [Knowledge Computing Lab](http://se.pku.edu.cn/kcl/) of Peking University. CodeShell has 7 billion parameters and was trained on 500 billion tokens with a context window length of 8194. On authoritative code evaluation benchmarks (HumanEval and MBPP), CodeShell achieves the best performance of its scale. Meanwhile, we provide deployment solutions and IDE plugins that complement CodeShell. Please refer to the [CodeShell code repository](https://github.com/WisdomShell/codeshell) for more details. This repository is for the CodeShell-7B base model.
17
 
 
11
 
12
  # CodeShell
13
 
14
+ CodeShell是[北京大学知识计算实验室](http://se.pku.edu.cn/kcl/)联合四川天府银行AI团队研发的多语言代码大模型基座。CodeShell具有70亿参数,在五千亿Tokens进行了训练,上下文窗口长度为8194。在权威的代码评估Benchmark(HumanEval与MBPP)上,CodeShell取得同等规模最好的性能。与此同时,我们提供了与CodeShell配套的部署方案与IDE插件,请参考代码库[CodeShell](https://github.com/WisdomShell/codeshell)。同时,为了方便中国用户下载,我们在[Modelscope](https://modelscope.cn/organization/WisdomShell)和[Wisemodel](https://www.wisemodel.cn/models/WisdomShell/CodeShell-7B/)中也上传了对应版本,国内用户可以访问。本仓库为CodeShell-7B预训练模型仓库。
15
 
16
  CodeShell is a multi-language code LLM developed by the [Knowledge Computing Lab](http://se.pku.edu.cn/kcl/) of Peking University. CodeShell has 7 billion parameters and was trained on 500 billion tokens with a context window length of 8194. On authoritative code evaluation benchmarks (HumanEval and MBPP), CodeShell achieves the best performance of its scale. Meanwhile, we provide deployment solutions and IDE plugins that complement CodeShell. Please refer to the [CodeShell code repository](https://github.com/WisdomShell/codeshell) for more details. This repository is for the CodeShell-7B base model.
17