ruixie commited on
Commit
a853e16
·
1 Parent(s): 26e6676

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ codeshell-chat-q4_0.gguf filter=lfs diff=lfs merge=lfs -text
codeshell-chat-q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:124428f480ea1ee2451b78622e39b0fde88ea034acd34e933da56a1aa0b0bec1
3
+ size 4569817120
modeling_codeshell.py CHANGED
@@ -32,17 +32,14 @@
32
  """PyTorch CodeShell model."""
33
  import os
34
  import math
35
- from typing import List, Optional, Tuple, Union, Callable
36
- from threading import Thread
37
- from queue import Queue
38
-
39
 
40
  import torch
41
  import torch.utils.checkpoint
42
  from torch import nn
43
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
44
 
45
- from transformers import LogitsProcessorList, StoppingCriteriaList, StoppingCriteria, PreTrainedModel, PretrainedConfig
46
  from transformers.generation.utils import GenerationConfig
47
 
48
  from transformers.activations import ACT2FN
@@ -57,6 +54,7 @@ from transformers.utils import (
57
  )
58
  from .configuration_codeshell import CodeShellConfig
59
 
 
60
  # Fused kernels
61
  # Use separate functions for each case because conditionals prevent kernel fusion.
62
  # TODO: Could have better fused kernels depending on scaling, dropout and head mask.
@@ -745,62 +743,6 @@ class CodeShellModel(CodeShellPreTrainedModel):
745
  hidden_states=all_hidden_states,
746
  attentions=all_self_attentions,
747
  )
748
-
749
- class EndOfFunctionCriteria(StoppingCriteria):
750
- """Custom `StoppingCriteria` which checks if all generated functions in the batch are completed."""
751
- def __init__(self, input_lengths, eof_strings, tokenizer):
752
- self.input_lengths = input_lengths
753
- self.eof_strings = eof_strings
754
- self.tokenizer = tokenizer
755
-
756
- def __call__(self, input_ids, scores, **kwargs):
757
- """Returns true if all generated sequences contain any of the end-of-function strings."""
758
- decoded_generations = []
759
- for _input_ids, input_length in zip(input_ids, self.input_lengths):
760
- decoded_generations.append(self.tokenizer.decode(_input_ids[input_length:]))
761
- done = []
762
- for decoded_generation in decoded_generations:
763
- done.append(
764
- any(
765
- [
766
- stop_string in decoded_generation
767
- for stop_string in self.eof_strings
768
- ]
769
- )
770
- )
771
- return all(done)
772
-
773
- class TextIterStreamer:
774
- def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
775
- self.tokenizer = tokenizer
776
- self.skip_prompt = skip_prompt
777
- self.skip_special_tokens = skip_special_tokens
778
- self.tokens = []
779
- self.text_queue = Queue()
780
- self.next_tokens_are_prompt = True
781
-
782
- def put(self, value):
783
- if self.skip_prompt and self.next_tokens_are_prompt:
784
- self.next_tokens_are_prompt = False
785
- else:
786
- if len(value.shape) > 1:
787
- value = value[0]
788
- self.tokens.extend(value.tolist())
789
- self.text_queue.put(
790
- self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
791
-
792
- def end(self):
793
- self.text_queue.put(None)
794
-
795
- def __iter__(self):
796
- return self
797
-
798
- def __next__(self):
799
- value = self.text_queue.get()
800
- if value is None:
801
- raise StopIteration()
802
- else:
803
- return value
804
 
805
 
806
  @add_start_docstrings(
@@ -944,65 +886,6 @@ class CodeShellForCausalLM(CodeShellPreTrainedModel):
944
  tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
945
  )
946
  return reordered_past
947
-
948
-
949
- def build_chat_input(self, query, history, tokenizer, max_new_tokens=None):
950
- user_name = "\n## human:"
951
- ai_name = "\n## assistant: "
952
- stop = '|<end>|'
953
-
954
- prompt = ''
955
- for q, r in history:
956
- prompt += f"{user_name}{q}{stop}"
957
- prompt += f"{ai_name}{r}{stop}"
958
- prompt += f"{user_name}{query}{stop}"
959
- prompt += ai_name.rstrip()
960
-
961
- max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
962
- max_input_tokens = self.config.n_positions - max_new_tokens
963
-
964
- input_tokens = tokenizer.encode(prompt)
965
- input_tokens = input_tokens[-max_input_tokens:] # truncate left
966
- return torch.LongTensor([input_tokens]).to(self.device)
967
-
968
- def chat(self, query, history, tokenizer, stream=False,
969
- generation_config: Optional[GenerationConfig]=None):
970
- generation_config = generation_config or self.generation_config
971
- input_ids = self.build_chat_input(query, history, tokenizer, generation_config.max_new_tokens)
972
- stopping_criteria = StoppingCriteriaList(
973
- [EndOfFunctionCriteria([len(input_ids[0])], ['|<end>|', '<|endoftext|>'], tokenizer)]
974
- )
975
-
976
- if stream:
977
- streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
978
- Thread(target=self.generate, kwargs=dict(
979
- inputs=input_ids, streamer=streamer,
980
- stopping_criteria = stopping_criteria,
981
- generation_config=generation_config,
982
- )).start()
983
- return streamer
984
- else:
985
- outputs = self.generate(input_ids, generation_config=generation_config, stopping_criteria = stopping_criteria)
986
- response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
987
- return response
988
-
989
- def generate_stream(self, prompt, tokenizer, generation_config=None, **kwargs):
990
- generation_config = generation_config or self.generation_config
991
- max_input_tokens = self.config.n_positions - self.generation_config.max_new_tokens
992
-
993
- input_ids = tokenizer.encode(prompt)
994
- input_ids = input_ids[-max_input_tokens:] # truncate left
995
-
996
- stopping_criteria = StoppingCriteriaList(
997
- [EndOfFunctionCriteria([len(input_ids[0])], ['|<end>|', '<|endoftext|>'], tokenizer)]
998
- )
999
-
1000
- streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
1001
- Thread(target=self.generate, kwargs=dict(
1002
- inputs=input_ids, stopping_criteria=stopping_criteria, **kwargs
1003
- )).start()
1004
- return streamer
1005
-
1006
 
1007
  class CodeShell4bitForCausalLM(CodeShellForCausalLM):
1008
  def __init__(self, config):
@@ -1083,4 +966,5 @@ class CodeShell4bitForCausalLM(CodeShellForCausalLM):
1083
  if device_map is not None:
1084
  model = model.to(torch.device(device_map))
1085
 
1086
- return model
 
 
32
  """PyTorch CodeShell model."""
33
  import os
34
  import math
35
+ from typing import List, Optional, Tuple, Union
 
 
 
36
 
37
  import torch
38
  import torch.utils.checkpoint
39
  from torch import nn
40
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
41
 
42
+ from transformers import PreTrainedModel, PretrainedConfig
43
  from transformers.generation.utils import GenerationConfig
44
 
45
  from transformers.activations import ACT2FN
 
54
  )
55
  from .configuration_codeshell import CodeShellConfig
56
 
57
+
58
  # Fused kernels
59
  # Use separate functions for each case because conditionals prevent kernel fusion.
60
  # TODO: Could have better fused kernels depending on scaling, dropout and head mask.
 
743
  hidden_states=all_hidden_states,
744
  attentions=all_self_attentions,
745
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746
 
747
 
748
  @add_start_docstrings(
 
886
  tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
887
  )
888
  return reordered_past
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889
 
890
  class CodeShell4bitForCausalLM(CodeShellForCausalLM):
891
  def __init__(self, config):
 
966
  if device_map is not None:
967
  model = model.to(torch.device(device_map))
968
 
969
+ return model
970
+