Create README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,235 @@
|
|
1 |
---
|
|
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
##
|
|
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
###
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
##
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: gemma
|
3 |
library_name: transformers
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
extra_gated_heading: Access Gemma on Hugging Face
|
6 |
+
extra_gated_prompt: >-
|
7 |
+
To access Gemma on Hugging Face, you’re required to review and agree to
|
8 |
+
Google’s usage license. To do this, please ensure you’re logged in to Hugging
|
9 |
+
Face and click below. Requests are processed immediately.
|
10 |
+
extra_gated_button_content: Acknowledge license
|
11 |
+
tags:
|
12 |
+
- conversational
|
13 |
+
base_model:
|
14 |
+
- google/gemma-2-9b
|
15 |
+
language:
|
16 |
+
- tr
|
17 |
+
|
18 |
+
model-index:
|
19 |
+
- name: gemma-2-9b-it-tr
|
20 |
+
results:
|
21 |
+
- task:
|
22 |
+
type: multiple-choice
|
23 |
+
dataset:
|
24 |
+
type: multiple-choice
|
25 |
+
name: MMLU_TR_V0.2
|
26 |
+
metrics:
|
27 |
+
- name: 5-shot
|
28 |
+
type: 5-shot
|
29 |
+
value: 0.5982
|
30 |
+
verified: false
|
31 |
+
- task:
|
32 |
+
type: multiple-choice
|
33 |
+
dataset:
|
34 |
+
type: multiple-choice
|
35 |
+
name: Truthful_QA_V0.2
|
36 |
+
metrics:
|
37 |
+
- name: 0-shot
|
38 |
+
type: 0-shot
|
39 |
+
value: 0.4991
|
40 |
+
verified: false
|
41 |
+
- task:
|
42 |
+
type: multiple-choice
|
43 |
+
dataset:
|
44 |
+
type: multiple-choice
|
45 |
+
name: ARC_TR_V0.2
|
46 |
+
metrics:
|
47 |
+
- name: 25-shot
|
48 |
+
type: 25-shot
|
49 |
+
value: 0.5367
|
50 |
+
verified: false
|
51 |
+
- task:
|
52 |
+
type: multiple-choice
|
53 |
+
dataset:
|
54 |
+
type: multiple-choice
|
55 |
+
name: HellaSwag_TR_V0.2
|
56 |
+
metrics:
|
57 |
+
- name: 10-shot
|
58 |
+
type: 10-shot
|
59 |
+
value: 0.5701
|
60 |
+
verified: false
|
61 |
+
- task:
|
62 |
+
type: multiple-choice
|
63 |
+
dataset:
|
64 |
+
type: multiple-choice
|
65 |
+
name: GSM8K_TR_V0.2
|
66 |
+
metrics:
|
67 |
+
- name: 5-shot
|
68 |
+
type: 5-shot
|
69 |
+
value: 0.6682
|
70 |
+
verified: false
|
71 |
+
- task:
|
72 |
+
type: multiple-choice
|
73 |
+
dataset:
|
74 |
+
type: multiple-choice
|
75 |
+
name: Winogrande_TR_V0.2
|
76 |
+
metrics:
|
77 |
+
- name: 5-shot
|
78 |
+
type: 5-shot
|
79 |
+
value: 0.6058
|
80 |
+
verified: false
|
81 |
---
|
82 |
|
83 |
+
<img src="https://huggingface.co/WiroAI/gemma-2-9b-it-tr/blob/main/wiro_logo.png"/>
|
84 |
|
|
|
85 |
|
86 |
+
# 🌟 Meet with WiroAI/gemma-2-9b-it-tr! A robust language model with more Turkish language and culture support! 🌟
|
87 |
|
88 |
+
## 🌟 Key Features
|
89 |
|
90 |
+
Fine-tuned with 500,000+ high-quality Turkish instructions
|
91 |
+
Adapted to Turkish culture and local context
|
92 |
+
Built on Google's cutting-edge Gemma architecture
|
93 |
|
94 |
+
📝 Model Details
|
95 |
+
Gemma-2-9b-it-tr is the Turkish-speaking member of Google's innovative Gemma model family. This model has been trained using Supervised Fine-Tuning (SFT) on carefully curated high-quality Turkish instructions. Leveraging the foundations of Gemini technology, this model demonstrates superior performance in Turkish language processing tasks.
|
96 |
|
97 |
+
## 🔧 Technical Specifications
|
98 |
|
99 |
+
Architecture: Decoder-only transformer
|
100 |
+
Base Model: Google Gemma 2 9B
|
101 |
+
Training Data: 500,000+ specially selected Turkish instructions
|
102 |
+
Language Support: Turkish (with comprehensive local context understanding) and other common languages.
|
103 |
|
104 |
+
## 💡 Use Cases
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
Text Generation and Editing
|
107 |
+
Question Answering
|
108 |
+
Summarization
|
109 |
+
Analysis and Reasoning
|
110 |
+
Content Transformation
|
111 |
+
Turkish Natural Language Processing Tasks
|
112 |
+
Turkish Culture
|
113 |
|
114 |
+
## 🚀 Advantages
|
115 |
|
116 |
+
Local Understanding: Ability to comprehend Turkish culture, idioms, and current events
|
117 |
+
Resource Efficiency: Effective operation even with limited hardware resources
|
118 |
+
Flexible Deployment: Usable on desktop, laptop, or custom cloud infrastructure
|
119 |
+
Open Model: Transparent and customizable architecture
|
120 |
|
121 |
+
## 🌍 About Google Gemma 2
|
122 |
+
Gemma is Google's family of lightweight, state-of-the-art open models, developed using the same research and technology used to create the Gemini models. These models are designed to be deployable in environments with limited resources, making AI technology accessible to everyone.
|
123 |
|
124 |
+
## 📈 Performance and Limitations
|
125 |
+
While the model demonstrates high performance in Turkish language tasks, users should consider the following:
|
126 |
|
127 |
+
Use clear and structured instructions for best results
|
128 |
+
Verify model outputs for critical applications
|
129 |
+
Evaluate resource requirements before deployment
|
130 |
+
Be aware that benchmarks below
|
131 |
|
132 |
+
### Benchmark Scores
|
133 |
|
|
|
134 |
|
135 |
+
| Models | MMLU TR | TruthfulQA TR | ARC TR | HellaSwag TR | GSM8K TR | WinoGrande TR | Average |
|
136 |
+
|-----------------------------------------------------------|:-------:|:-------------:|:------:|:------------:|:--------:|:-------------:|:-------:|
|
137 |
+
| WiroAI/gemma-2-9b-it-tr | 59.8 | 49.9 | 53.7 | 57.0 | 66.8 | 60.6 | 58.0 |
|
138 |
+
| selimc/OrpoGemma-2-9B-TR | 53.0 | 54.3 | 52.4 | 52.0 | 64.8 | 58.9 | 55.9 |
|
139 |
+
| Metin/Gemma-2-9b-it-TR-DPO-V1 | 51.3 | 54.7 | 52.6 | 51.2 | 67.1 | 55.2 | 55.4 |
|
140 |
+
| CohereForAI/aya-expanse-8b | 52.3 | 52.8 | 49.3 | 56.7 | 61.3 | 59.2 | 55.3 |
|
141 |
+
| ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1 | 52.0 | 57.6 | 51.0 | 53.0 | 59.8 | 58.0 | 55.2 |
|
142 |
+
| google/gemma-2-9b-it | 51.8 | 53.0 | 52.2 | 51.5 | 63.0 | 56.2 | 54.6 |
|
143 |
+
| Eurdem/Defne-llama3.1-8B | 52.9 | 51.2 | 47.1 | 51.6 | 59.9 | 57.5 | 53.4 |
|
144 |
+
| meta-llama/Meta-Llama-3-8B-Instruct | 52.2 | 49.2 | 44.2 | 49.2 | 56.0 | 56.7 | 51.3 |
|
145 |
+
| WiroAI/Llama-3.1-8b-instruct-tr | 52.2 | 49.2 | 44.2 | 49.2 | 56.0 | 56.7 | 51.3 |
|
146 |
|
147 |
+
Models Benchmarks are tested with
|
148 |
+
```python
|
149 |
+
lm_eval --model_args pretrained=<model_path> --tasks mmlu_tr_v0.2,arc_tr-v0.2,gsm8k_tr-v0.2,hellaswag_tr-v0.2,truthfulqa_v0.2,winogrande_tr-v0.2
|
150 |
+
```
|
151 |
+
Please see https://github.com/malhajar17/lm-evaluation-harness_turkish and note that we move forward with default language inference which is the same approach in OpenLLMLeaderboard v2.0
|
152 |
|
153 |
+
## Usage
|
154 |
|
155 |
+
### Transformers Pipeline
|
156 |
|
157 |
+
```python
|
158 |
+
import transformers
|
159 |
+
import torch
|
160 |
|
|
|
161 |
|
162 |
+
model_id = "WiroAI/gemma-2-9b-it-tr"
|
163 |
|
164 |
+
pipeline = transformers.pipeline(
|
165 |
+
"text-generation",
|
166 |
+
model=model_id,
|
167 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
168 |
+
device_map="auto",
|
169 |
+
)
|
170 |
|
171 |
+
pipeline.model.eval()
|
172 |
+
instruction = "Bana İstanbul ile alakalı bir sosyal medya postu hazırlar mısın?"
|
173 |
|
174 |
+
messages = [
|
175 |
+
{"role": "user", "content": f"{instruction}"}
|
176 |
+
]
|
177 |
|
178 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
179 |
+
messages,
|
180 |
+
tokenize=False,
|
181 |
+
add_generation_prompt=True
|
182 |
+
)
|
183 |
+
|
184 |
+
terminators = [
|
185 |
+
pipeline.tokenizer.eos_token_id,
|
186 |
+
pipeline.tokenizer.convert_tokens_to_ids("<end_of_turn>")
|
187 |
+
]
|
188 |
+
|
189 |
+
outputs = pipeline(
|
190 |
+
prompt,
|
191 |
+
max_new_tokens=512,
|
192 |
+
eos_token_id=terminators,
|
193 |
+
do_sample=True,
|
194 |
+
temperature=0.9,
|
195 |
+
)
|
196 |
+
|
197 |
+
print(outputs[0]["generated_text"][len(prompt):])
|
198 |
+
```
|
199 |
+
|
200 |
+
```markdown
|
201 |
+
İstanbul'un büyüsüne kapılın! :city_sunset:
|
202 |
+
Halk arasında "dünyanın masalı şehri" olarak bilinen İstanbul, her köşesinde tarih, kültür ve modern yaşamın bir araya geldiği eşsiz bir şehir.
|
203 |
+
Yüzyıllardır farklı medeniyetlerin izlerini taşıyan İstanbul, tarihi mekanlarından, müzelerinden, çarşılarından ve restoranlarından oluşan zengin kültürel mirasa sahiptir.
|
204 |
+
Boğaz'ın eşsiz manzarasında tekne turu yapmak, Topkapı Sarayı'nı ziyaret etmek, Grand Bazaar'da alışveriş yapmak, Mısır Çarşısı'nın canlı atmosferinde kaybolmak, Galata Kulesi'nden muhteşem bir manzara deneyimlemek veya Beyoğlu'nun hareketli sokaklarında yürüyüş yapmak İstanbul'da unutulmaz anılar yaratmak için fırsatlar sunar.
|
205 |
+
İstanbul'un büyülü atmosferini kendiniz yaşamak için hemen planınızı yapın! :flag-tr: #İstanbul #Türkiye #Seyahat #Tarih #Kültür #Gezi
|
206 |
+
```
|
207 |
+
|
208 |
+
## 🤝 License and Usage
|
209 |
+
This model is provided under Google's Gemma license. Please review and accept the license terms before use.
|
210 |
+
|
211 |
+
## 📫 Contact and Support
|
212 |
+
For questions, suggestions, and feedback, please open an issue on HuggingFace or contact us directly from our website.
|
213 |
+
|
214 |
+
|
215 |
+
## Citation
|
216 |
+
|
217 |
+
```none
|
218 |
+
@article{WiroAI,
|
219 |
+
title={gemma-2-9b-it-tr},
|
220 |
+
author={Abdullah Bezir, Furkan Burhan Türkay, Cengiz Asmazoğlu},
|
221 |
+
year={2024},
|
222 |
+
url={https://huggingface.co/WiroAI/gemma-2-9b-it-tr}
|
223 |
+
}
|
224 |
+
```
|
225 |
+
|
226 |
+
```none
|
227 |
+
@article{gemma_2024,
|
228 |
+
title={Gemma},
|
229 |
+
url={https://www.kaggle.com/m/3301},
|
230 |
+
DOI={10.34740/KAGGLE/M/3301},
|
231 |
+
publisher={Kaggle},
|
232 |
+
author={Gemma Team},
|
233 |
+
year={2024}
|
234 |
+
}
|
235 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|