update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: t5-small-pointer-mtop
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# t5-small-pointer-mtop
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1317
|
18 |
+
- Exact Match: 0.5503
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.001
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 16
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 32
|
42 |
+
- total_train_batch_size: 512
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- training_steps: 3000
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Exact Match |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------:|
|
51 |
+
| 2.0944 | 6.65 | 200 | 0.6548 | 0.0027 |
|
52 |
+
| 0.5307 | 13.33 | 400 | 0.2456 | 0.2779 |
|
53 |
+
| 0.2388 | 19.98 | 600 | 0.1486 | 0.4559 |
|
54 |
+
| 0.1459 | 26.65 | 800 | 0.1190 | 0.5043 |
|
55 |
+
| 0.1011 | 33.33 | 1000 | 0.1117 | 0.5230 |
|
56 |
+
| 0.0774 | 39.98 | 1200 | 0.1084 | 0.5374 |
|
57 |
+
| 0.0598 | 46.65 | 1400 | 0.1064 | 0.5405 |
|
58 |
+
| 0.0478 | 53.33 | 1600 | 0.1147 | 0.5454 |
|
59 |
+
| 0.0397 | 59.98 | 1800 | 0.1139 | 0.5472 |
|
60 |
+
| 0.0337 | 66.65 | 2000 | 0.1179 | 0.5481 |
|
61 |
+
| 0.0286 | 73.33 | 2200 | 0.1243 | 0.5499 |
|
62 |
+
| 0.0251 | 79.98 | 2400 | 0.1259 | 0.5481 |
|
63 |
+
| 0.0218 | 86.65 | 2600 | 0.1276 | 0.5503 |
|
64 |
+
| 0.0197 | 93.33 | 2800 | 0.1309 | 0.5503 |
|
65 |
+
| 0.0184 | 99.98 | 3000 | 0.1317 | 0.5503 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.25.1
|
71 |
+
- Pytorch 1.13.0+cu117
|
72 |
+
- Datasets 2.7.1
|
73 |
+
- Tokenizers 0.13.2
|