update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- glue
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: roberta-base-sst2
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: glue
|
17 |
+
type: glue
|
18 |
+
config: sst2
|
19 |
+
split: train
|
20 |
+
args: sst2
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9415137614678899
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# roberta-base-sst2
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4270
|
35 |
+
- Accuracy: 0.9415
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.06
|
61 |
+
- num_epochs: 10.0
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
67 |
+
| 0.575 | 0.12 | 500 | 0.2665 | 0.9071 |
|
68 |
+
| 0.2989 | 0.24 | 1000 | 0.2088 | 0.9220 |
|
69 |
+
| 0.2725 | 0.36 | 1500 | 0.2560 | 0.9243 |
|
70 |
+
| 0.2814 | 0.48 | 2000 | 0.2016 | 0.9266 |
|
71 |
+
| 0.2586 | 0.59 | 2500 | 0.2293 | 0.9174 |
|
72 |
+
| 0.2536 | 0.71 | 3000 | 0.2340 | 0.9323 |
|
73 |
+
| 0.2494 | 0.83 | 3500 | 0.1952 | 0.9323 |
|
74 |
+
| 0.2396 | 0.95 | 4000 | 0.2494 | 0.9323 |
|
75 |
+
| 0.2123 | 1.07 | 4500 | 0.2187 | 0.9381 |
|
76 |
+
| 0.2042 | 1.19 | 5000 | 0.2812 | 0.9151 |
|
77 |
+
| 0.2083 | 1.31 | 5500 | 0.2739 | 0.9346 |
|
78 |
+
| 0.2041 | 1.43 | 6000 | 0.2087 | 0.9381 |
|
79 |
+
| 0.1969 | 1.54 | 6500 | 0.2590 | 0.9255 |
|
80 |
+
| 0.1982 | 1.66 | 7000 | 0.2445 | 0.9300 |
|
81 |
+
| 0.1943 | 1.78 | 7500 | 0.2798 | 0.9266 |
|
82 |
+
| 0.1848 | 1.9 | 8000 | 0.2844 | 0.9312 |
|
83 |
+
| 0.1788 | 2.02 | 8500 | 0.2998 | 0.9255 |
|
84 |
+
| 0.1623 | 2.14 | 9000 | 0.2696 | 0.9392 |
|
85 |
+
| 0.1499 | 2.26 | 9500 | 0.2533 | 0.9278 |
|
86 |
+
| 0.1426 | 2.38 | 10000 | 0.2971 | 0.9300 |
|
87 |
+
| 0.1479 | 2.49 | 10500 | 0.2596 | 0.9358 |
|
88 |
+
| 0.1405 | 2.61 | 11000 | 0.2945 | 0.9255 |
|
89 |
+
| 0.1577 | 2.73 | 11500 | 0.4061 | 0.9002 |
|
90 |
+
| 0.1521 | 2.85 | 12000 | 0.2724 | 0.9335 |
|
91 |
+
| 0.1426 | 2.97 | 12500 | 0.2712 | 0.9427 |
|
92 |
+
| 0.1206 | 3.09 | 13000 | 0.2954 | 0.9358 |
|
93 |
+
| 0.1074 | 3.21 | 13500 | 0.2653 | 0.9392 |
|
94 |
+
| 0.112 | 3.33 | 14000 | 0.2778 | 0.9346 |
|
95 |
+
| 0.1147 | 3.44 | 14500 | 0.3705 | 0.9312 |
|
96 |
+
| 0.1196 | 3.56 | 15000 | 0.2890 | 0.9346 |
|
97 |
+
| 0.1159 | 3.68 | 15500 | 0.3449 | 0.9266 |
|
98 |
+
| 0.119 | 3.8 | 16000 | 0.3207 | 0.9335 |
|
99 |
+
| 0.1268 | 3.92 | 16500 | 0.3235 | 0.9312 |
|
100 |
+
| 0.1074 | 4.04 | 17000 | 0.3650 | 0.9335 |
|
101 |
+
| 0.0805 | 4.16 | 17500 | 0.3338 | 0.9381 |
|
102 |
+
| 0.0838 | 4.28 | 18000 | 0.4302 | 0.9209 |
|
103 |
+
| 0.0848 | 4.39 | 18500 | 0.4096 | 0.9323 |
|
104 |
+
| 0.0922 | 4.51 | 19000 | 0.3332 | 0.9369 |
|
105 |
+
| 0.091 | 4.63 | 19500 | 0.3024 | 0.9438 |
|
106 |
+
| 0.0977 | 4.75 | 20000 | 0.2674 | 0.9495 |
|
107 |
+
| 0.0897 | 4.87 | 20500 | 0.3993 | 0.9300 |
|
108 |
+
| 0.1013 | 4.99 | 21000 | 0.3227 | 0.9289 |
|
109 |
+
| 0.0671 | 5.11 | 21500 | 0.3374 | 0.9427 |
|
110 |
+
| 0.0671 | 5.23 | 22000 | 0.4108 | 0.9278 |
|
111 |
+
| 0.0652 | 5.34 | 22500 | 0.3550 | 0.9381 |
|
112 |
+
| 0.0664 | 5.46 | 23000 | 0.3398 | 0.9358 |
|
113 |
+
| 0.0742 | 5.58 | 23500 | 0.3286 | 0.9381 |
|
114 |
+
| 0.0758 | 5.7 | 24000 | 0.3276 | 0.9312 |
|
115 |
+
| 0.075 | 5.82 | 24500 | 0.3202 | 0.9369 |
|
116 |
+
| 0.0686 | 5.94 | 25000 | 0.3481 | 0.9415 |
|
117 |
+
| 0.0729 | 6.06 | 25500 | 0.3816 | 0.9335 |
|
118 |
+
| 0.0568 | 6.18 | 26000 | 0.3132 | 0.9381 |
|
119 |
+
| 0.0529 | 6.29 | 26500 | 0.3757 | 0.9300 |
|
120 |
+
| 0.0506 | 6.41 | 27000 | 0.3396 | 0.9381 |
|
121 |
+
| 0.0476 | 6.53 | 27500 | 0.3642 | 0.9404 |
|
122 |
+
| 0.0555 | 6.65 | 28000 | 0.3430 | 0.9404 |
|
123 |
+
| 0.0574 | 6.77 | 28500 | 0.3401 | 0.9392 |
|
124 |
+
| 0.0524 | 6.89 | 29000 | 0.3378 | 0.9346 |
|
125 |
+
| 0.0492 | 7.01 | 29500 | 0.3833 | 0.9381 |
|
126 |
+
| 0.039 | 7.13 | 30000 | 0.3347 | 0.9346 |
|
127 |
+
| 0.0411 | 7.24 | 30500 | 0.4404 | 0.9335 |
|
128 |
+
| 0.0412 | 7.36 | 31000 | 0.3618 | 0.9381 |
|
129 |
+
| 0.0477 | 7.48 | 31500 | 0.3806 | 0.9381 |
|
130 |
+
| 0.0435 | 7.6 | 32000 | 0.3912 | 0.9335 |
|
131 |
+
| 0.0443 | 7.72 | 32500 | 0.3900 | 0.9392 |
|
132 |
+
| 0.0421 | 7.84 | 33000 | 0.4152 | 0.9369 |
|
133 |
+
| 0.0495 | 7.96 | 33500 | 0.3832 | 0.9289 |
|
134 |
+
| 0.0293 | 8.08 | 34000 | 0.4427 | 0.9346 |
|
135 |
+
| 0.0253 | 8.19 | 34500 | 0.4425 | 0.9381 |
|
136 |
+
| 0.0407 | 8.31 | 35000 | 0.4102 | 0.9358 |
|
137 |
+
| 0.0311 | 8.43 | 35500 | 0.4447 | 0.9369 |
|
138 |
+
| 0.0291 | 8.55 | 36000 | 0.4612 | 0.9346 |
|
139 |
+
| 0.035 | 8.67 | 36500 | 0.4241 | 0.9346 |
|
140 |
+
| 0.0381 | 8.79 | 37000 | 0.4198 | 0.9312 |
|
141 |
+
| 0.0234 | 8.91 | 37500 | 0.4345 | 0.9369 |
|
142 |
+
| 0.0311 | 9.03 | 38000 | 0.4558 | 0.9312 |
|
143 |
+
| 0.028 | 9.14 | 38500 | 0.4245 | 0.9381 |
|
144 |
+
| 0.0213 | 9.26 | 39000 | 0.4462 | 0.9381 |
|
145 |
+
| 0.0276 | 9.38 | 39500 | 0.4210 | 0.9381 |
|
146 |
+
| 0.0183 | 9.5 | 40000 | 0.4310 | 0.9404 |
|
147 |
+
| 0.0184 | 9.62 | 40500 | 0.4437 | 0.9404 |
|
148 |
+
| 0.0296 | 9.74 | 41000 | 0.4311 | 0.9392 |
|
149 |
+
| 0.019 | 9.86 | 41500 | 0.4244 | 0.9415 |
|
150 |
+
| 0.0245 | 9.98 | 42000 | 0.4270 | 0.9415 |
|
151 |
+
|
152 |
+
|
153 |
+
### Framework versions
|
154 |
+
|
155 |
+
- Transformers 4.21.3
|
156 |
+
- Pytorch 1.7.1
|
157 |
+
- Datasets 1.18.3
|
158 |
+
- Tokenizers 0.11.6
|