Wiam's picture
End of training
9696d96 verified
metadata
library_name: transformers
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: baby-cry-classification-finetuned-babycry-v4
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.8152173913043478
          - name: F1
            type: f1
            value: 0.7322311897943244
          - name: Precision
            type: precision
            value: 0.6645793950850661
          - name: Recall
            type: recall
            value: 0.8152173913043478

baby-cry-classification-finetuned-babycry-v4

This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-english on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7255
  • Accuracy: {'accuracy': 0.8152173913043478}
  • F1: 0.7322
  • Precision: 0.6646
  • Recall: 0.8152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6244 0.5435 25 0.7271 {'accuracy': 0.8152173913043478} 0.7322 0.6646 0.8152
0.6901 1.0870 50 0.7196 {'accuracy': 0.8152173913043478} 0.7322 0.6646 0.8152
0.5873 1.6304 75 0.7426 {'accuracy': 0.8152173913043478} 0.7322 0.6646 0.8152
0.8029 2.1739 100 0.7124 {'accuracy': 0.8152173913043478} 0.7322 0.6646 0.8152
0.5661 2.7174 125 0.7259 {'accuracy': 0.8152173913043478} 0.7322 0.6646 0.8152
0.6121 3.2609 150 0.7431 {'accuracy': 0.8152173913043478} 0.7322 0.6646 0.8152
0.7571 3.8043 175 0.7316 {'accuracy': 0.8152173913043478} 0.7322 0.6646 0.8152
0.5284 4.3478 200 0.7277 {'accuracy': 0.8152173913043478} 0.7322 0.6646 0.8152
0.7182 4.8913 225 0.7255 {'accuracy': 0.8152173913043478} 0.7322 0.6646 0.8152

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1