Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- checkpoint-272/config.json +26 -0
- checkpoint-272/generation_config.json +7 -0
- checkpoint-272/global_step272/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-272/global_step272/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-272/global_step272/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-272/global_step272/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-272/global_step272/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-272/global_step272/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-272/global_step272/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-272/global_step272/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-272/global_step272/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt +3 -0
- checkpoint-272/global_step272/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-272/global_step272/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-272/global_step272/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-272/global_step272/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-272/global_step272/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-272/global_step272/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-272/global_step272/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-272/global_step272/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-272/global_step272/zero_pp_rank_8_mp_rank_00_model_states.pt +3 -0
- checkpoint-272/latest +1 -0
- checkpoint-272/model-00001-of-00003.safetensors +3 -0
- checkpoint-272/model-00002-of-00003.safetensors +3 -0
- checkpoint-272/model-00003-of-00003.safetensors +3 -0
- checkpoint-272/model.safetensors.index.json +298 -0
- checkpoint-272/rng_state_0.pth +3 -0
- checkpoint-272/rng_state_1.pth +3 -0
- checkpoint-272/rng_state_2.pth +3 -0
- checkpoint-272/rng_state_3.pth +3 -0
- checkpoint-272/rng_state_4.pth +3 -0
- checkpoint-272/rng_state_5.pth +3 -0
- checkpoint-272/rng_state_6.pth +3 -0
- checkpoint-272/rng_state_7.pth +3 -0
- checkpoint-272/rng_state_8.pth +3 -0
- checkpoint-272/scheduler.pt +3 -0
- checkpoint-272/trainer_state.json +1965 -0
- checkpoint-272/training_args.bin +3 -0
- checkpoint-272/zero_to_fp32.py +592 -0
- checkpoint-544/config.json +26 -0
- checkpoint-544/generation_config.json +7 -0
- checkpoint-544/global_step544/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-544/global_step544/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-544/global_step544/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-544/global_step544/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-544/global_step544/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-544/global_step544/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-544/global_step544/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-544/global_step544/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-544/global_step544/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt +3 -0
- checkpoint-544/global_step544/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
checkpoint-272/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-math/MetaMath-Mistral-7B",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.38.2",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32001
|
26 |
+
}
|
checkpoint-272/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.38.2"
|
7 |
+
}
|
checkpoint-272/global_step272/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e31849038fa9cd4678f9b66e0fd5c35fc041a94b8b208c80fd609d43b0126a0
|
3 |
+
size 4831618059
|
checkpoint-272/global_step272/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf6fa0ee61cc028e89dd431ca628d68f10a1f95a7ff5ed098166ecc8f6d8c1f7
|
3 |
+
size 4831618059
|
checkpoint-272/global_step272/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac6663dd6e69cfb0a3eea1233a785100ecbe6a9f90463a7f4d8fc505fdbbce3b
|
3 |
+
size 4831618059
|
checkpoint-272/global_step272/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4112230565592bb524050869c6efe110642e4ed541727329587ea0adb1f119e
|
3 |
+
size 4831618059
|
checkpoint-272/global_step272/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f062872fdddf3358ba89f0e2c081d0665fe65398f61e674b2bb8ff363748c302
|
3 |
+
size 4831618059
|
checkpoint-272/global_step272/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55c346ffddb70182661cdf51a8bc119e315e3aed15d66d7130adfb1f268320ae
|
3 |
+
size 4831618059
|
checkpoint-272/global_step272/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8376e6c211faf63973ea5506550505a6e4ab80119df71bce7c81e8301a07331b
|
3 |
+
size 4831618059
|
checkpoint-272/global_step272/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f090e3cda29d6cdd54eb5b30634166223f1f2036143772c25b6456a05bfce39
|
3 |
+
size 4831618059
|
checkpoint-272/global_step272/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e92caf0a4a936c842a455a9a7dfb1f8b5f82f5adaa1b3c327e8da76f5ac5ad70
|
3 |
+
size 4831618059
|
checkpoint-272/global_step272/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:280bfa97e4d83b87d6b6e0bd40e16e960075c0f7cc87d31a7841a3ee3639f30a
|
3 |
+
size 153829
|
checkpoint-272/global_step272/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e8cb4abe6afe1bd7dba3a8b7485c585f50fdb8f2f6c91c8d63f094c6048859c
|
3 |
+
size 153829
|
checkpoint-272/global_step272/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d52d693fc7723ad49cc2f0672dc16bb568676ee6305230603aa5e256824d6e6
|
3 |
+
size 153829
|
checkpoint-272/global_step272/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:327184ae8ca4973115be4df9d8909ab4309b4c7d5786289ef8b4c20fd2fb41b7
|
3 |
+
size 153829
|
checkpoint-272/global_step272/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65f34e4df94e1fe86860c5ad6f589b08b34935929479a9b75cf4567ec42986a5
|
3 |
+
size 153829
|
checkpoint-272/global_step272/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab500a98d6713dc68032e36a46e64cecdc6539c9a62b6b61040628613f0f81e8
|
3 |
+
size 153829
|
checkpoint-272/global_step272/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d5a4e70c3f97c371795ec0366e88e65ccd7799ec2152fe13ddfd24fdc027ab0
|
3 |
+
size 153829
|
checkpoint-272/global_step272/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9df33f762b6e113595c5d0bf3d434930fa902b91a8a8eaa7fb0e94bef7670fd
|
3 |
+
size 153829
|
checkpoint-272/global_step272/zero_pp_rank_8_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21bf5d06b3a94429b3b6c0c6acfce9e344c07b8bf1311da209791490c130b1c4
|
3 |
+
size 153829
|
checkpoint-272/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step272
|
checkpoint-272/model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb7ddd132c950151879ee704033773a1c08f22fedfbe2459a71cf1304378ddad
|
3 |
+
size 4943170528
|
checkpoint-272/model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:254fae62a9850c1250d558ce0c0a152cbf3843311738cf4ef96d0b9eb71c8ba0
|
3 |
+
size 4999819336
|
checkpoint-272/model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5b4497b7b6358ed1de5f189caf947738698ebcf00c3dec230c973c0552e5d86
|
3 |
+
size 4540524536
|
checkpoint-272/model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483480576
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
checkpoint-272/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e37b5dbacf124b1514a121af5a0ce2c5a8e77be83bf19ae649a665a468082d28
|
3 |
+
size 16240
|
checkpoint-272/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cef1e45867cf45a884341d3d1df4a7485b45b65e7ef081206135e62bcccb42f5
|
3 |
+
size 16240
|
checkpoint-272/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c6bfccb1c88b7ba35a635a24b890be2e0af719772c1d99cd0a5ba42ef608ec
|
3 |
+
size 16240
|
checkpoint-272/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7430906032884979d0dae96997913bf4abe89d78b37987bb6dfdce3fed39b2a9
|
3 |
+
size 16240
|
checkpoint-272/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d01f98d61eec8827743e7fec29e83ca6ecdd540e8d277817dce7fc06a97b258
|
3 |
+
size 16240
|
checkpoint-272/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:794f06b07218837f68fb7b5fe84665c13dc6a5180f685b6d8e6b4365ee8470bf
|
3 |
+
size 16240
|
checkpoint-272/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:406f4ad8fafa642cbfe4d8b4fd81a4a4c339ce8fed12fd4ced0b9ccd483ad18f
|
3 |
+
size 16240
|
checkpoint-272/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa49f77dfa366a04d42761a422f906b99bb3991a7119ec4d497a4cd6a129c4e4
|
3 |
+
size 16240
|
checkpoint-272/rng_state_8.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52aeb24997fb0b3fdd2c038ceb9e0a217724db63ac5cb47bb06bab9354d5be3c
|
3 |
+
size 16240
|
checkpoint-272/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f321f2f0ea6e36dc3550ed5e4455f04e5d7636ce96621025506fa529386c2b11
|
3 |
+
size 1064
|
checkpoint-272/trainer_state.json
ADDED
@@ -0,0 +1,1965 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.22680288553237915,
|
3 |
+
"best_model_checkpoint": "./EulerMath-Mistral-7B-model/checkpoint-272",
|
4 |
+
"epoch": 0.9990817263544536,
|
5 |
+
"eval_steps": 68,
|
6 |
+
"global_step": 272,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"grad_norm": 19.19068191513093,
|
14 |
+
"learning_rate": 5.000000000000001e-07,
|
15 |
+
"loss": 0.707,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0,
|
20 |
+
"eval_loss": 0.9060535430908203,
|
21 |
+
"eval_runtime": 1745.9683,
|
22 |
+
"eval_samples_per_second": 1.324,
|
23 |
+
"eval_steps_per_second": 0.074,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.01,
|
28 |
+
"grad_norm": 20.035932532601844,
|
29 |
+
"learning_rate": 1.0000000000000002e-06,
|
30 |
+
"loss": 0.7236,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.01,
|
35 |
+
"grad_norm": 19.31513317860667,
|
36 |
+
"learning_rate": 1.5e-06,
|
37 |
+
"loss": 0.7201,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01,
|
42 |
+
"grad_norm": 16.561326930760348,
|
43 |
+
"learning_rate": 2.0000000000000003e-06,
|
44 |
+
"loss": 0.6717,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.02,
|
49 |
+
"grad_norm": 9.069275733221579,
|
50 |
+
"learning_rate": 2.5e-06,
|
51 |
+
"loss": 0.573,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.02,
|
56 |
+
"grad_norm": 6.0702110208300475,
|
57 |
+
"learning_rate": 3e-06,
|
58 |
+
"loss": 0.4965,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.03,
|
63 |
+
"grad_norm": 6.5389430446896055,
|
64 |
+
"learning_rate": 3.5e-06,
|
65 |
+
"loss": 0.5093,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.03,
|
70 |
+
"grad_norm": 7.709934958779789,
|
71 |
+
"learning_rate": 4.000000000000001e-06,
|
72 |
+
"loss": 0.524,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.03,
|
77 |
+
"grad_norm": 6.1640217934257135,
|
78 |
+
"learning_rate": 4.5e-06,
|
79 |
+
"loss": 0.503,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.04,
|
84 |
+
"grad_norm": 4.079182690080823,
|
85 |
+
"learning_rate": 5e-06,
|
86 |
+
"loss": 0.4787,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.04,
|
91 |
+
"grad_norm": 4.269731620276111,
|
92 |
+
"learning_rate": 4.999956736067563e-06,
|
93 |
+
"loss": 0.4545,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.04,
|
98 |
+
"grad_norm": 4.059214670786909,
|
99 |
+
"learning_rate": 4.999826945767665e-06,
|
100 |
+
"loss": 0.4638,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.05,
|
105 |
+
"grad_norm": 3.583247385116129,
|
106 |
+
"learning_rate": 4.9996106335924965e-06,
|
107 |
+
"loss": 0.4396,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.05,
|
112 |
+
"grad_norm": 3.2077663599892405,
|
113 |
+
"learning_rate": 4.999307807028872e-06,
|
114 |
+
"loss": 0.4287,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.06,
|
119 |
+
"grad_norm": 2.3678816023894513,
|
120 |
+
"learning_rate": 4.998918476557964e-06,
|
121 |
+
"loss": 0.4169,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.06,
|
126 |
+
"grad_norm": 1.9925263681909064,
|
127 |
+
"learning_rate": 4.998442655654946e-06,
|
128 |
+
"loss": 0.4099,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.06,
|
133 |
+
"grad_norm": 1.7706573910428134,
|
134 |
+
"learning_rate": 4.997880360788527e-06,
|
135 |
+
"loss": 0.4003,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.07,
|
140 |
+
"grad_norm": 1.6789390301868525,
|
141 |
+
"learning_rate": 4.997231611420374e-06,
|
142 |
+
"loss": 0.399,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.07,
|
147 |
+
"grad_norm": 1.5622054221426698,
|
148 |
+
"learning_rate": 4.996496430004446e-06,
|
149 |
+
"loss": 0.3885,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.07,
|
154 |
+
"grad_norm": 1.5663787846468284,
|
155 |
+
"learning_rate": 4.995674841986217e-06,
|
156 |
+
"loss": 0.3987,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.08,
|
161 |
+
"grad_norm": 1.4502330087611721,
|
162 |
+
"learning_rate": 4.994766875801789e-06,
|
163 |
+
"loss": 0.3962,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.08,
|
168 |
+
"grad_norm": 1.4188997099391882,
|
169 |
+
"learning_rate": 4.993772562876909e-06,
|
170 |
+
"loss": 0.3845,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.08,
|
175 |
+
"grad_norm": 1.4360806887465898,
|
176 |
+
"learning_rate": 4.992691937625892e-06,
|
177 |
+
"loss": 0.3764,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.09,
|
182 |
+
"grad_norm": 1.4216582090099372,
|
183 |
+
"learning_rate": 4.991525037450412e-06,
|
184 |
+
"loss": 0.3712,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.09,
|
189 |
+
"grad_norm": 1.2856499279799387,
|
190 |
+
"learning_rate": 4.990271902738223e-06,
|
191 |
+
"loss": 0.3603,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1,
|
196 |
+
"grad_norm": 1.247117404577534,
|
197 |
+
"learning_rate": 4.988932576861754e-06,
|
198 |
+
"loss": 0.3652,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.1,
|
203 |
+
"grad_norm": 1.3197850379000642,
|
204 |
+
"learning_rate": 4.987507106176606e-06,
|
205 |
+
"loss": 0.371,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.1,
|
210 |
+
"grad_norm": 1.243400495941476,
|
211 |
+
"learning_rate": 4.985995540019956e-06,
|
212 |
+
"loss": 0.3599,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.11,
|
217 |
+
"grad_norm": 1.3278566257982103,
|
218 |
+
"learning_rate": 4.984397930708838e-06,
|
219 |
+
"loss": 0.3594,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.11,
|
224 |
+
"grad_norm": 1.337022527470652,
|
225 |
+
"learning_rate": 4.982714333538344e-06,
|
226 |
+
"loss": 0.3477,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.11,
|
231 |
+
"grad_norm": 1.2099362672151601,
|
232 |
+
"learning_rate": 4.980944806779698e-06,
|
233 |
+
"loss": 0.3425,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.12,
|
238 |
+
"grad_norm": 1.2110593150023343,
|
239 |
+
"learning_rate": 4.979089411678252e-06,
|
240 |
+
"loss": 0.3567,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.12,
|
245 |
+
"grad_norm": 1.2334965596913852,
|
246 |
+
"learning_rate": 4.977148212451354e-06,
|
247 |
+
"loss": 0.3526,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.12,
|
252 |
+
"grad_norm": 1.1687161424016368,
|
253 |
+
"learning_rate": 4.975121276286136e-06,
|
254 |
+
"loss": 0.3496,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.13,
|
259 |
+
"grad_norm": 1.1881954676378432,
|
260 |
+
"learning_rate": 4.973008673337181e-06,
|
261 |
+
"loss": 0.3321,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.13,
|
266 |
+
"grad_norm": 1.2174270605971114,
|
267 |
+
"learning_rate": 4.970810476724097e-06,
|
268 |
+
"loss": 0.3446,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.14,
|
273 |
+
"grad_norm": 1.1609330509652702,
|
274 |
+
"learning_rate": 4.968526762528988e-06,
|
275 |
+
"loss": 0.341,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.14,
|
280 |
+
"grad_norm": 1.2149352568793006,
|
281 |
+
"learning_rate": 4.9661576097938205e-06,
|
282 |
+
"loss": 0.3459,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.14,
|
287 |
+
"grad_norm": 1.1885081900677397,
|
288 |
+
"learning_rate": 4.963703100517684e-06,
|
289 |
+
"loss": 0.3425,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.15,
|
294 |
+
"grad_norm": 1.113235885075549,
|
295 |
+
"learning_rate": 4.961163319653959e-06,
|
296 |
+
"loss": 0.339,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.15,
|
301 |
+
"grad_norm": 1.0983562726057154,
|
302 |
+
"learning_rate": 4.958538355107369e-06,
|
303 |
+
"loss": 0.3298,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.15,
|
308 |
+
"grad_norm": 1.1594289217865181,
|
309 |
+
"learning_rate": 4.955828297730949e-06,
|
310 |
+
"loss": 0.3187,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.16,
|
315 |
+
"grad_norm": 1.1714548911644644,
|
316 |
+
"learning_rate": 4.953033241322887e-06,
|
317 |
+
"loss": 0.3373,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.16,
|
322 |
+
"grad_norm": 1.1450397323165031,
|
323 |
+
"learning_rate": 4.950153282623289e-06,
|
324 |
+
"loss": 0.3232,
|
325 |
+
"step": 44
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.17,
|
329 |
+
"grad_norm": 1.1526363934692334,
|
330 |
+
"learning_rate": 4.947188521310827e-06,
|
331 |
+
"loss": 0.3243,
|
332 |
+
"step": 45
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.17,
|
336 |
+
"grad_norm": 1.2175235837438554,
|
337 |
+
"learning_rate": 4.944139059999286e-06,
|
338 |
+
"loss": 0.3252,
|
339 |
+
"step": 46
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.17,
|
343 |
+
"grad_norm": 1.099789045296574,
|
344 |
+
"learning_rate": 4.941005004234019e-06,
|
345 |
+
"loss": 0.3178,
|
346 |
+
"step": 47
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.18,
|
350 |
+
"grad_norm": 1.2219677196886505,
|
351 |
+
"learning_rate": 4.937786462488284e-06,
|
352 |
+
"loss": 0.3185,
|
353 |
+
"step": 48
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.18,
|
357 |
+
"grad_norm": 1.1806399387287625,
|
358 |
+
"learning_rate": 4.9344835461595016e-06,
|
359 |
+
"loss": 0.3131,
|
360 |
+
"step": 49
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.18,
|
364 |
+
"grad_norm": 1.1320527868188186,
|
365 |
+
"learning_rate": 4.93109636956539e-06,
|
366 |
+
"loss": 0.3198,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.19,
|
371 |
+
"grad_norm": 1.2551253674231917,
|
372 |
+
"learning_rate": 4.927625049940013e-06,
|
373 |
+
"loss": 0.3063,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.19,
|
378 |
+
"grad_norm": 1.1131050315591549,
|
379 |
+
"learning_rate": 4.9240697074297205e-06,
|
380 |
+
"loss": 0.3192,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.19,
|
385 |
+
"grad_norm": 1.218025833644298,
|
386 |
+
"learning_rate": 4.920430465088992e-06,
|
387 |
+
"loss": 0.3083,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.2,
|
392 |
+
"grad_norm": 1.090531576651011,
|
393 |
+
"learning_rate": 4.916707448876173e-06,
|
394 |
+
"loss": 0.3076,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.2,
|
399 |
+
"grad_norm": 1.1865422414756877,
|
400 |
+
"learning_rate": 4.912900787649124e-06,
|
401 |
+
"loss": 0.3155,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.21,
|
406 |
+
"grad_norm": 1.1236405558973956,
|
407 |
+
"learning_rate": 4.909010613160751e-06,
|
408 |
+
"loss": 0.306,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.21,
|
413 |
+
"grad_norm": 1.222805799933775,
|
414 |
+
"learning_rate": 4.90503706005445e-06,
|
415 |
+
"loss": 0.3054,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.21,
|
420 |
+
"grad_norm": 1.179814726076065,
|
421 |
+
"learning_rate": 4.900980265859449e-06,
|
422 |
+
"loss": 0.309,
|
423 |
+
"step": 58
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.22,
|
427 |
+
"grad_norm": 1.155763655177263,
|
428 |
+
"learning_rate": 4.896840370986042e-06,
|
429 |
+
"loss": 0.2974,
|
430 |
+
"step": 59
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.22,
|
434 |
+
"grad_norm": 1.1687171308842221,
|
435 |
+
"learning_rate": 4.892617518720737e-06,
|
436 |
+
"loss": 0.3018,
|
437 |
+
"step": 60
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.22,
|
441 |
+
"grad_norm": 1.2240587320323661,
|
442 |
+
"learning_rate": 4.88831185522129e-06,
|
443 |
+
"loss": 0.3066,
|
444 |
+
"step": 61
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.23,
|
448 |
+
"grad_norm": 1.1042960875500205,
|
449 |
+
"learning_rate": 4.883923529511646e-06,
|
450 |
+
"loss": 0.2977,
|
451 |
+
"step": 62
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.23,
|
455 |
+
"grad_norm": 1.1885949614868223,
|
456 |
+
"learning_rate": 4.87945269347679e-06,
|
457 |
+
"loss": 0.3087,
|
458 |
+
"step": 63
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.24,
|
462 |
+
"grad_norm": 1.1420656757477574,
|
463 |
+
"learning_rate": 4.874899501857477e-06,
|
464 |
+
"loss": 0.2904,
|
465 |
+
"step": 64
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.24,
|
469 |
+
"grad_norm": 1.1453980260713446,
|
470 |
+
"learning_rate": 4.87026411224489e-06,
|
471 |
+
"loss": 0.306,
|
472 |
+
"step": 65
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.24,
|
476 |
+
"grad_norm": 1.2729287210416769,
|
477 |
+
"learning_rate": 4.865546685075174e-06,
|
478 |
+
"loss": 0.2938,
|
479 |
+
"step": 66
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.25,
|
483 |
+
"grad_norm": 1.2052792222072466,
|
484 |
+
"learning_rate": 4.860747383623889e-06,
|
485 |
+
"loss": 0.2977,
|
486 |
+
"step": 67
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.25,
|
490 |
+
"grad_norm": 1.2657508580603682,
|
491 |
+
"learning_rate": 4.85586637400036e-06,
|
492 |
+
"loss": 0.3011,
|
493 |
+
"step": 68
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.25,
|
497 |
+
"eval_loss": 0.32630813121795654,
|
498 |
+
"eval_runtime": 1744.5857,
|
499 |
+
"eval_samples_per_second": 1.325,
|
500 |
+
"eval_steps_per_second": 0.074,
|
501 |
+
"step": 68
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.25,
|
505 |
+
"grad_norm": 1.1832834131492187,
|
506 |
+
"learning_rate": 4.85090382514192e-06,
|
507 |
+
"loss": 0.2972,
|
508 |
+
"step": 69
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.26,
|
512 |
+
"grad_norm": 1.255475532117491,
|
513 |
+
"learning_rate": 4.845859908808074e-06,
|
514 |
+
"loss": 0.302,
|
515 |
+
"step": 70
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.26,
|
519 |
+
"grad_norm": 1.298818409489401,
|
520 |
+
"learning_rate": 4.8407347995745465e-06,
|
521 |
+
"loss": 0.2935,
|
522 |
+
"step": 71
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.26,
|
526 |
+
"grad_norm": 1.3499885398461409,
|
527 |
+
"learning_rate": 4.8355286748272405e-06,
|
528 |
+
"loss": 0.295,
|
529 |
+
"step": 72
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.27,
|
533 |
+
"grad_norm": 1.3446382549398914,
|
534 |
+
"learning_rate": 4.830241714756099e-06,
|
535 |
+
"loss": 0.2824,
|
536 |
+
"step": 73
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.27,
|
540 |
+
"grad_norm": 1.2082987304246777,
|
541 |
+
"learning_rate": 4.8248741023488705e-06,
|
542 |
+
"loss": 0.3026,
|
543 |
+
"step": 74
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.28,
|
547 |
+
"grad_norm": 1.3432457490726049,
|
548 |
+
"learning_rate": 4.81942602338477e-06,
|
549 |
+
"loss": 0.2985,
|
550 |
+
"step": 75
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 0.28,
|
554 |
+
"grad_norm": 1.170337150254348,
|
555 |
+
"learning_rate": 4.813897666428054e-06,
|
556 |
+
"loss": 0.2969,
|
557 |
+
"step": 76
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.28,
|
561 |
+
"grad_norm": 1.339414484466056,
|
562 |
+
"learning_rate": 4.808289222821491e-06,
|
563 |
+
"loss": 0.2985,
|
564 |
+
"step": 77
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.29,
|
568 |
+
"grad_norm": 1.1944077580462804,
|
569 |
+
"learning_rate": 4.802600886679743e-06,
|
570 |
+
"loss": 0.2852,
|
571 |
+
"step": 78
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.29,
|
575 |
+
"grad_norm": 1.357246876413576,
|
576 |
+
"learning_rate": 4.79683285488264e-06,
|
577 |
+
"loss": 0.2904,
|
578 |
+
"step": 79
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.29,
|
582 |
+
"grad_norm": 1.4115119936533302,
|
583 |
+
"learning_rate": 4.790985327068376e-06,
|
584 |
+
"loss": 0.3079,
|
585 |
+
"step": 80
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.3,
|
589 |
+
"grad_norm": 1.285315536324781,
|
590 |
+
"learning_rate": 4.7850585056265866e-06,
|
591 |
+
"loss": 0.2816,
|
592 |
+
"step": 81
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 0.3,
|
596 |
+
"grad_norm": 1.3631452273406317,
|
597 |
+
"learning_rate": 4.779052595691355e-06,
|
598 |
+
"loss": 0.2865,
|
599 |
+
"step": 82
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.3,
|
603 |
+
"grad_norm": 1.196518391890594,
|
604 |
+
"learning_rate": 4.772967805134106e-06,
|
605 |
+
"loss": 0.2793,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.31,
|
610 |
+
"grad_norm": 1.2485622601747421,
|
611 |
+
"learning_rate": 4.766804344556414e-06,
|
612 |
+
"loss": 0.2827,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.31,
|
617 |
+
"grad_norm": 1.2945099002171803,
|
618 |
+
"learning_rate": 4.7605624272827125e-06,
|
619 |
+
"loss": 0.2854,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.32,
|
624 |
+
"grad_norm": 1.224576498812201,
|
625 |
+
"learning_rate": 4.754242269352911e-06,
|
626 |
+
"loss": 0.2875,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.32,
|
631 |
+
"grad_norm": 1.2535747430861524,
|
632 |
+
"learning_rate": 4.747844089514919e-06,
|
633 |
+
"loss": 0.2807,
|
634 |
+
"step": 87
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.32,
|
638 |
+
"grad_norm": 1.171951212608294,
|
639 |
+
"learning_rate": 4.741368109217072e-06,
|
640 |
+
"loss": 0.2761,
|
641 |
+
"step": 88
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.33,
|
645 |
+
"grad_norm": 1.2123280755320154,
|
646 |
+
"learning_rate": 4.734814552600469e-06,
|
647 |
+
"loss": 0.2832,
|
648 |
+
"step": 89
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.33,
|
652 |
+
"grad_norm": 1.1358700523339582,
|
653 |
+
"learning_rate": 4.728183646491215e-06,
|
654 |
+
"loss": 0.2871,
|
655 |
+
"step": 90
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.33,
|
659 |
+
"grad_norm": 1.1484698203958048,
|
660 |
+
"learning_rate": 4.721475620392567e-06,
|
661 |
+
"loss": 0.2806,
|
662 |
+
"step": 91
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.34,
|
666 |
+
"grad_norm": 1.1887290775946084,
|
667 |
+
"learning_rate": 4.714690706477e-06,
|
668 |
+
"loss": 0.2858,
|
669 |
+
"step": 92
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.34,
|
673 |
+
"grad_norm": 1.1568061250650739,
|
674 |
+
"learning_rate": 4.707829139578156e-06,
|
675 |
+
"loss": 0.2888,
|
676 |
+
"step": 93
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.35,
|
680 |
+
"grad_norm": 1.176832058354239,
|
681 |
+
"learning_rate": 4.700891157182729e-06,
|
682 |
+
"loss": 0.2829,
|
683 |
+
"step": 94
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.35,
|
687 |
+
"grad_norm": 1.138549309431515,
|
688 |
+
"learning_rate": 4.693876999422241e-06,
|
689 |
+
"loss": 0.2763,
|
690 |
+
"step": 95
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.35,
|
694 |
+
"grad_norm": 1.1479926100837645,
|
695 |
+
"learning_rate": 4.68678690906473e-06,
|
696 |
+
"loss": 0.2686,
|
697 |
+
"step": 96
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.36,
|
701 |
+
"grad_norm": 1.1771516377197246,
|
702 |
+
"learning_rate": 4.679621131506347e-06,
|
703 |
+
"loss": 0.2814,
|
704 |
+
"step": 97
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.36,
|
708 |
+
"grad_norm": 1.2184996974539424,
|
709 |
+
"learning_rate": 4.672379914762867e-06,
|
710 |
+
"loss": 0.2822,
|
711 |
+
"step": 98
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.36,
|
715 |
+
"grad_norm": 1.1792108348242942,
|
716 |
+
"learning_rate": 4.665063509461098e-06,
|
717 |
+
"loss": 0.282,
|
718 |
+
"step": 99
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.37,
|
722 |
+
"grad_norm": 1.2850683815489914,
|
723 |
+
"learning_rate": 4.657672168830211e-06,
|
724 |
+
"loss": 0.2776,
|
725 |
+
"step": 100
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.37,
|
729 |
+
"grad_norm": 1.2508897770511975,
|
730 |
+
"learning_rate": 4.650206148692977e-06,
|
731 |
+
"loss": 0.2787,
|
732 |
+
"step": 101
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.37,
|
736 |
+
"grad_norm": 1.2031990746786907,
|
737 |
+
"learning_rate": 4.642665707456908e-06,
|
738 |
+
"loss": 0.2719,
|
739 |
+
"step": 102
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.38,
|
743 |
+
"grad_norm": 1.1842474930123255,
|
744 |
+
"learning_rate": 4.635051106105316e-06,
|
745 |
+
"loss": 0.2732,
|
746 |
+
"step": 103
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.38,
|
750 |
+
"grad_norm": 1.2596970412015132,
|
751 |
+
"learning_rate": 4.627362608188281e-06,
|
752 |
+
"loss": 0.2731,
|
753 |
+
"step": 104
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.39,
|
757 |
+
"grad_norm": 1.4294759311096437,
|
758 |
+
"learning_rate": 4.619600479813524e-06,
|
759 |
+
"loss": 0.2738,
|
760 |
+
"step": 105
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.39,
|
764 |
+
"grad_norm": 1.31619095423113,
|
765 |
+
"learning_rate": 4.6117649896372055e-06,
|
766 |
+
"loss": 0.2764,
|
767 |
+
"step": 106
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.39,
|
771 |
+
"grad_norm": 1.2349728666776751,
|
772 |
+
"learning_rate": 4.6038564088546185e-06,
|
773 |
+
"loss": 0.2722,
|
774 |
+
"step": 107
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.4,
|
778 |
+
"grad_norm": 1.2418477065252158,
|
779 |
+
"learning_rate": 4.5958750111908065e-06,
|
780 |
+
"loss": 0.271,
|
781 |
+
"step": 108
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.4,
|
785 |
+
"grad_norm": 1.3529322240859796,
|
786 |
+
"learning_rate": 4.587821072891089e-06,
|
787 |
+
"loss": 0.276,
|
788 |
+
"step": 109
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.4,
|
792 |
+
"grad_norm": 1.2671711562594927,
|
793 |
+
"learning_rate": 4.579694872711501e-06,
|
794 |
+
"loss": 0.2706,
|
795 |
+
"step": 110
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.41,
|
799 |
+
"grad_norm": 1.238356873891121,
|
800 |
+
"learning_rate": 4.571496691909142e-06,
|
801 |
+
"loss": 0.2749,
|
802 |
+
"step": 111
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.41,
|
806 |
+
"grad_norm": 1.2059912760303926,
|
807 |
+
"learning_rate": 4.563226814232444e-06,
|
808 |
+
"loss": 0.2676,
|
809 |
+
"step": 112
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.42,
|
813 |
+
"grad_norm": 1.1876458610423755,
|
814 |
+
"learning_rate": 4.554885525911351e-06,
|
815 |
+
"loss": 0.2743,
|
816 |
+
"step": 113
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.42,
|
820 |
+
"grad_norm": 1.1715592937521375,
|
821 |
+
"learning_rate": 4.54647311564741e-06,
|
822 |
+
"loss": 0.2734,
|
823 |
+
"step": 114
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.42,
|
827 |
+
"grad_norm": 1.236329928620471,
|
828 |
+
"learning_rate": 4.53798987460378e-06,
|
829 |
+
"loss": 0.2855,
|
830 |
+
"step": 115
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.43,
|
834 |
+
"grad_norm": 1.1717820999866062,
|
835 |
+
"learning_rate": 4.529436096395157e-06,
|
836 |
+
"loss": 0.2699,
|
837 |
+
"step": 116
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.43,
|
841 |
+
"grad_norm": 1.3490101744641771,
|
842 |
+
"learning_rate": 4.520812077077604e-06,
|
843 |
+
"loss": 0.2731,
|
844 |
+
"step": 117
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.43,
|
848 |
+
"grad_norm": 1.192962777526519,
|
849 |
+
"learning_rate": 4.512118115138315e-06,
|
850 |
+
"loss": 0.2719,
|
851 |
+
"step": 118
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.44,
|
855 |
+
"grad_norm": 1.2384657820337475,
|
856 |
+
"learning_rate": 4.5033545114852734e-06,
|
857 |
+
"loss": 0.2647,
|
858 |
+
"step": 119
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.44,
|
862 |
+
"grad_norm": 1.2128578058956592,
|
863 |
+
"learning_rate": 4.494521569436845e-06,
|
864 |
+
"loss": 0.2615,
|
865 |
+
"step": 120
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.44,
|
869 |
+
"grad_norm": 1.3237640584842072,
|
870 |
+
"learning_rate": 4.485619594711278e-06,
|
871 |
+
"loss": 0.2663,
|
872 |
+
"step": 121
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.45,
|
876 |
+
"grad_norm": 1.2691929068372239,
|
877 |
+
"learning_rate": 4.476648895416116e-06,
|
878 |
+
"loss": 0.2614,
|
879 |
+
"step": 122
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.45,
|
883 |
+
"grad_norm": 1.2606618599832538,
|
884 |
+
"learning_rate": 4.467609782037543e-06,
|
885 |
+
"loss": 0.2606,
|
886 |
+
"step": 123
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.46,
|
890 |
+
"grad_norm": 1.3048381409549332,
|
891 |
+
"learning_rate": 4.4585025674296315e-06,
|
892 |
+
"loss": 0.2601,
|
893 |
+
"step": 124
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.46,
|
897 |
+
"grad_norm": 1.3022768451107203,
|
898 |
+
"learning_rate": 4.449327566803515e-06,
|
899 |
+
"loss": 0.2683,
|
900 |
+
"step": 125
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.46,
|
904 |
+
"grad_norm": 1.3820289309230962,
|
905 |
+
"learning_rate": 4.44008509771648e-06,
|
906 |
+
"loss": 0.2681,
|
907 |
+
"step": 126
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.47,
|
911 |
+
"grad_norm": 1.2802354999925132,
|
912 |
+
"learning_rate": 4.430775480060973e-06,
|
913 |
+
"loss": 0.2648,
|
914 |
+
"step": 127
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.47,
|
918 |
+
"grad_norm": 1.3242106497833372,
|
919 |
+
"learning_rate": 4.4213990360535274e-06,
|
920 |
+
"loss": 0.268,
|
921 |
+
"step": 128
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.47,
|
925 |
+
"grad_norm": 1.3009976864959876,
|
926 |
+
"learning_rate": 4.411956090223618e-06,
|
927 |
+
"loss": 0.2662,
|
928 |
+
"step": 129
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.48,
|
932 |
+
"grad_norm": 1.3212829688401424,
|
933 |
+
"learning_rate": 4.4024469694024194e-06,
|
934 |
+
"loss": 0.2605,
|
935 |
+
"step": 130
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.48,
|
939 |
+
"grad_norm": 1.2123869956343973,
|
940 |
+
"learning_rate": 4.3928720027115015e-06,
|
941 |
+
"loss": 0.2604,
|
942 |
+
"step": 131
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.48,
|
946 |
+
"grad_norm": 1.284537459167204,
|
947 |
+
"learning_rate": 4.383231521551432e-06,
|
948 |
+
"loss": 0.2593,
|
949 |
+
"step": 132
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.49,
|
953 |
+
"grad_norm": 1.443338680183996,
|
954 |
+
"learning_rate": 4.373525859590313e-06,
|
955 |
+
"loss": 0.2561,
|
956 |
+
"step": 133
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.49,
|
960 |
+
"grad_norm": 1.2809230468289576,
|
961 |
+
"learning_rate": 4.3637553527522265e-06,
|
962 |
+
"loss": 0.2599,
|
963 |
+
"step": 134
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.5,
|
967 |
+
"grad_norm": 1.3669470609932883,
|
968 |
+
"learning_rate": 4.3539203392056114e-06,
|
969 |
+
"loss": 0.2587,
|
970 |
+
"step": 135
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.5,
|
974 |
+
"grad_norm": 1.4112940230474231,
|
975 |
+
"learning_rate": 4.3440211593515556e-06,
|
976 |
+
"loss": 0.2585,
|
977 |
+
"step": 136
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.5,
|
981 |
+
"eval_loss": 0.28355109691619873,
|
982 |
+
"eval_runtime": 1744.5175,
|
983 |
+
"eval_samples_per_second": 1.325,
|
984 |
+
"eval_steps_per_second": 0.074,
|
985 |
+
"step": 136
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.5,
|
989 |
+
"grad_norm": 1.3061396480876788,
|
990 |
+
"learning_rate": 4.33405815581202e-06,
|
991 |
+
"loss": 0.2549,
|
992 |
+
"step": 137
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.51,
|
996 |
+
"grad_norm": 1.46460991921356,
|
997 |
+
"learning_rate": 4.324031673417971e-06,
|
998 |
+
"loss": 0.2639,
|
999 |
+
"step": 138
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.51,
|
1003 |
+
"grad_norm": 1.211168578821325,
|
1004 |
+
"learning_rate": 4.313942059197457e-06,
|
1005 |
+
"loss": 0.2581,
|
1006 |
+
"step": 139
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 0.51,
|
1010 |
+
"grad_norm": 1.4657150585182341,
|
1011 |
+
"learning_rate": 4.303789662363587e-06,
|
1012 |
+
"loss": 0.2616,
|
1013 |
+
"step": 140
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 0.52,
|
1017 |
+
"grad_norm": 1.4251800081691455,
|
1018 |
+
"learning_rate": 4.29357483430245e-06,
|
1019 |
+
"loss": 0.2668,
|
1020 |
+
"step": 141
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 0.52,
|
1024 |
+
"grad_norm": 1.3599666478045191,
|
1025 |
+
"learning_rate": 4.283297928560951e-06,
|
1026 |
+
"loss": 0.2598,
|
1027 |
+
"step": 142
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 0.53,
|
1031 |
+
"grad_norm": 1.6103346253156021,
|
1032 |
+
"learning_rate": 4.272959300834574e-06,
|
1033 |
+
"loss": 0.2656,
|
1034 |
+
"step": 143
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.53,
|
1038 |
+
"grad_norm": 1.2184694580930981,
|
1039 |
+
"learning_rate": 4.262559308955072e-06,
|
1040 |
+
"loss": 0.2546,
|
1041 |
+
"step": 144
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.53,
|
1045 |
+
"grad_norm": 1.3362006281948362,
|
1046 |
+
"learning_rate": 4.252098312878083e-06,
|
1047 |
+
"loss": 0.2557,
|
1048 |
+
"step": 145
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 0.54,
|
1052 |
+
"grad_norm": 1.3369296531115935,
|
1053 |
+
"learning_rate": 4.241576674670668e-06,
|
1054 |
+
"loss": 0.2568,
|
1055 |
+
"step": 146
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 0.54,
|
1059 |
+
"grad_norm": 1.4747872641188995,
|
1060 |
+
"learning_rate": 4.230994758498783e-06,
|
1061 |
+
"loss": 0.2564,
|
1062 |
+
"step": 147
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 0.54,
|
1066 |
+
"grad_norm": 1.60778480089848,
|
1067 |
+
"learning_rate": 4.220352930614672e-06,
|
1068 |
+
"loss": 0.2573,
|
1069 |
+
"step": 148
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 0.55,
|
1073 |
+
"grad_norm": 1.188044808018822,
|
1074 |
+
"learning_rate": 4.209651559344195e-06,
|
1075 |
+
"loss": 0.2525,
|
1076 |
+
"step": 149
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.55,
|
1080 |
+
"grad_norm": 1.5856639134844415,
|
1081 |
+
"learning_rate": 4.198891015074074e-06,
|
1082 |
+
"loss": 0.2647,
|
1083 |
+
"step": 150
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.55,
|
1087 |
+
"grad_norm": 1.2859262024596512,
|
1088 |
+
"learning_rate": 4.1880716702390764e-06,
|
1089 |
+
"loss": 0.2471,
|
1090 |
+
"step": 151
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.56,
|
1094 |
+
"grad_norm": 1.4653590828956073,
|
1095 |
+
"learning_rate": 4.177193899309127e-06,
|
1096 |
+
"loss": 0.2575,
|
1097 |
+
"step": 152
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 0.56,
|
1101 |
+
"grad_norm": 1.1821237121686685,
|
1102 |
+
"learning_rate": 4.166258078776342e-06,
|
1103 |
+
"loss": 0.2493,
|
1104 |
+
"step": 153
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.57,
|
1108 |
+
"grad_norm": 1.575597475848357,
|
1109 |
+
"learning_rate": 4.155264587142002e-06,
|
1110 |
+
"loss": 0.2537,
|
1111 |
+
"step": 154
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 0.57,
|
1115 |
+
"grad_norm": 1.2702085752651588,
|
1116 |
+
"learning_rate": 4.144213804903449e-06,
|
1117 |
+
"loss": 0.2493,
|
1118 |
+
"step": 155
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.57,
|
1122 |
+
"grad_norm": 1.5026735427361002,
|
1123 |
+
"learning_rate": 4.133106114540923e-06,
|
1124 |
+
"loss": 0.2505,
|
1125 |
+
"step": 156
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.58,
|
1129 |
+
"grad_norm": 1.5297903686100347,
|
1130 |
+
"learning_rate": 4.121941900504316e-06,
|
1131 |
+
"loss": 0.2472,
|
1132 |
+
"step": 157
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 0.58,
|
1136 |
+
"grad_norm": 1.25258373375573,
|
1137 |
+
"learning_rate": 4.110721549199866e-06,
|
1138 |
+
"loss": 0.2487,
|
1139 |
+
"step": 158
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 0.58,
|
1143 |
+
"grad_norm": 1.5941545034573665,
|
1144 |
+
"learning_rate": 4.099445448976793e-06,
|
1145 |
+
"loss": 0.2497,
|
1146 |
+
"step": 159
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.59,
|
1150 |
+
"grad_norm": 1.3096080921873048,
|
1151 |
+
"learning_rate": 4.088113990113846e-06,
|
1152 |
+
"loss": 0.2439,
|
1153 |
+
"step": 160
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.59,
|
1157 |
+
"grad_norm": 1.6950266606195492,
|
1158 |
+
"learning_rate": 4.076727564805803e-06,
|
1159 |
+
"loss": 0.2538,
|
1160 |
+
"step": 161
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.6,
|
1164 |
+
"grad_norm": 1.440485526817555,
|
1165 |
+
"learning_rate": 4.065286567149891e-06,
|
1166 |
+
"loss": 0.2613,
|
1167 |
+
"step": 162
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.6,
|
1171 |
+
"grad_norm": 1.606032223752871,
|
1172 |
+
"learning_rate": 4.0537913931321495e-06,
|
1173 |
+
"loss": 0.2505,
|
1174 |
+
"step": 163
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 0.6,
|
1178 |
+
"grad_norm": 1.5319951141665498,
|
1179 |
+
"learning_rate": 4.042242440613724e-06,
|
1180 |
+
"loss": 0.256,
|
1181 |
+
"step": 164
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 0.61,
|
1185 |
+
"grad_norm": 1.3468098768373629,
|
1186 |
+
"learning_rate": 4.030640109317096e-06,
|
1187 |
+
"loss": 0.2424,
|
1188 |
+
"step": 165
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.61,
|
1192 |
+
"grad_norm": 1.6652562481471478,
|
1193 |
+
"learning_rate": 4.018984800812248e-06,
|
1194 |
+
"loss": 0.2396,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.61,
|
1199 |
+
"grad_norm": 1.302975081280886,
|
1200 |
+
"learning_rate": 4.007276918502763e-06,
|
1201 |
+
"loss": 0.2462,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.62,
|
1206 |
+
"grad_norm": 1.623125313268604,
|
1207 |
+
"learning_rate": 3.995516867611865e-06,
|
1208 |
+
"loss": 0.256,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.62,
|
1213 |
+
"grad_norm": 1.3069782036585045,
|
1214 |
+
"learning_rate": 3.983705055168391e-06,
|
1215 |
+
"loss": 0.2518,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.62,
|
1220 |
+
"grad_norm": 1.6527449270834242,
|
1221 |
+
"learning_rate": 3.971841889992706e-06,
|
1222 |
+
"loss": 0.2544,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 0.63,
|
1227 |
+
"grad_norm": 1.3586948189643275,
|
1228 |
+
"learning_rate": 3.959927782682551e-06,
|
1229 |
+
"loss": 0.2491,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.63,
|
1234 |
+
"grad_norm": 1.3440233460948727,
|
1235 |
+
"learning_rate": 3.947963145598833e-06,
|
1236 |
+
"loss": 0.2516,
|
1237 |
+
"step": 172
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.64,
|
1241 |
+
"grad_norm": 1.3389168317613516,
|
1242 |
+
"learning_rate": 3.935948392851354e-06,
|
1243 |
+
"loss": 0.2541,
|
1244 |
+
"step": 173
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.64,
|
1248 |
+
"grad_norm": 1.3142664585396417,
|
1249 |
+
"learning_rate": 3.923883940284472e-06,
|
1250 |
+
"loss": 0.2508,
|
1251 |
+
"step": 174
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.64,
|
1255 |
+
"grad_norm": 1.2767521320981983,
|
1256 |
+
"learning_rate": 3.911770205462717e-06,
|
1257 |
+
"loss": 0.2479,
|
1258 |
+
"step": 175
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.65,
|
1262 |
+
"grad_norm": 1.3281972191838929,
|
1263 |
+
"learning_rate": 3.899607607656334e-06,
|
1264 |
+
"loss": 0.2501,
|
1265 |
+
"step": 176
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.65,
|
1269 |
+
"grad_norm": 1.3793116543581005,
|
1270 |
+
"learning_rate": 3.887396567826769e-06,
|
1271 |
+
"loss": 0.2454,
|
1272 |
+
"step": 177
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.65,
|
1276 |
+
"grad_norm": 1.3293987156576104,
|
1277 |
+
"learning_rate": 3.875137508612104e-06,
|
1278 |
+
"loss": 0.249,
|
1279 |
+
"step": 178
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.66,
|
1283 |
+
"grad_norm": 1.4957835845929142,
|
1284 |
+
"learning_rate": 3.862830854312427e-06,
|
1285 |
+
"loss": 0.2445,
|
1286 |
+
"step": 179
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.66,
|
1290 |
+
"grad_norm": 1.2804679875446887,
|
1291 |
+
"learning_rate": 3.850477030875147e-06,
|
1292 |
+
"loss": 0.2411,
|
1293 |
+
"step": 180
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.66,
|
1297 |
+
"grad_norm": 1.5611119218300138,
|
1298 |
+
"learning_rate": 3.838076465880248e-06,
|
1299 |
+
"loss": 0.237,
|
1300 |
+
"step": 181
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.67,
|
1304 |
+
"grad_norm": 1.3387338916825537,
|
1305 |
+
"learning_rate": 3.825629588525498e-06,
|
1306 |
+
"loss": 0.2429,
|
1307 |
+
"step": 182
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.67,
|
1311 |
+
"grad_norm": 1.5091720406707172,
|
1312 |
+
"learning_rate": 3.813136829611583e-06,
|
1313 |
+
"loss": 0.2428,
|
1314 |
+
"step": 183
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.68,
|
1318 |
+
"grad_norm": 1.359116281666385,
|
1319 |
+
"learning_rate": 3.8005986215272056e-06,
|
1320 |
+
"loss": 0.2543,
|
1321 |
+
"step": 184
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.68,
|
1325 |
+
"grad_norm": 1.4094254259139338,
|
1326 |
+
"learning_rate": 3.7880153982341167e-06,
|
1327 |
+
"loss": 0.2502,
|
1328 |
+
"step": 185
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.68,
|
1332 |
+
"grad_norm": 1.2806047483095333,
|
1333 |
+
"learning_rate": 3.7753875952520943e-06,
|
1334 |
+
"loss": 0.2431,
|
1335 |
+
"step": 186
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.69,
|
1339 |
+
"grad_norm": 1.409218880016104,
|
1340 |
+
"learning_rate": 3.7627156496438686e-06,
|
1341 |
+
"loss": 0.2463,
|
1342 |
+
"step": 187
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 0.69,
|
1346 |
+
"grad_norm": 1.2466244404207094,
|
1347 |
+
"learning_rate": 3.7500000000000005e-06,
|
1348 |
+
"loss": 0.2372,
|
1349 |
+
"step": 188
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.69,
|
1353 |
+
"grad_norm": 1.4192484726979884,
|
1354 |
+
"learning_rate": 3.7372410864236954e-06,
|
1355 |
+
"loss": 0.2396,
|
1356 |
+
"step": 189
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.7,
|
1360 |
+
"grad_norm": 1.3260879207799772,
|
1361 |
+
"learning_rate": 3.7244393505155713e-06,
|
1362 |
+
"loss": 0.241,
|
1363 |
+
"step": 190
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 0.7,
|
1367 |
+
"grad_norm": 1.6407257220698948,
|
1368 |
+
"learning_rate": 3.7115952353583804e-06,
|
1369 |
+
"loss": 0.2552,
|
1370 |
+
"step": 191
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.71,
|
1374 |
+
"grad_norm": 1.4113760059054485,
|
1375 |
+
"learning_rate": 3.6987091855016667e-06,
|
1376 |
+
"loss": 0.2513,
|
1377 |
+
"step": 192
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.71,
|
1381 |
+
"grad_norm": 1.3008883773347888,
|
1382 |
+
"learning_rate": 3.6857816469463806e-06,
|
1383 |
+
"loss": 0.2361,
|
1384 |
+
"step": 193
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 0.71,
|
1388 |
+
"grad_norm": 1.3040857591494066,
|
1389 |
+
"learning_rate": 3.6728130671294485e-06,
|
1390 |
+
"loss": 0.2491,
|
1391 |
+
"step": 194
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 0.72,
|
1395 |
+
"grad_norm": 1.2543618451342111,
|
1396 |
+
"learning_rate": 3.6598038949082777e-06,
|
1397 |
+
"loss": 0.2309,
|
1398 |
+
"step": 195
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 0.72,
|
1402 |
+
"grad_norm": 1.3944108707435374,
|
1403 |
+
"learning_rate": 3.6467545805452266e-06,
|
1404 |
+
"loss": 0.2426,
|
1405 |
+
"step": 196
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 0.72,
|
1409 |
+
"grad_norm": 1.301851485207592,
|
1410 |
+
"learning_rate": 3.6336655756920198e-06,
|
1411 |
+
"loss": 0.2421,
|
1412 |
+
"step": 197
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.73,
|
1416 |
+
"grad_norm": 1.3562155385998595,
|
1417 |
+
"learning_rate": 3.620537333374114e-06,
|
1418 |
+
"loss": 0.2406,
|
1419 |
+
"step": 198
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.73,
|
1423 |
+
"grad_norm": 1.4263666275672418,
|
1424 |
+
"learning_rate": 3.6073703079750204e-06,
|
1425 |
+
"loss": 0.2418,
|
1426 |
+
"step": 199
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 0.73,
|
1430 |
+
"grad_norm": 1.2767612877970262,
|
1431 |
+
"learning_rate": 3.594164955220577e-06,
|
1432 |
+
"loss": 0.2353,
|
1433 |
+
"step": 200
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 0.74,
|
1437 |
+
"grad_norm": 1.3349267171117716,
|
1438 |
+
"learning_rate": 3.5809217321631745e-06,
|
1439 |
+
"loss": 0.2348,
|
1440 |
+
"step": 201
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 0.74,
|
1444 |
+
"grad_norm": 1.2217693484408796,
|
1445 |
+
"learning_rate": 3.5676410971659404e-06,
|
1446 |
+
"loss": 0.2287,
|
1447 |
+
"step": 202
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"epoch": 0.75,
|
1451 |
+
"grad_norm": 1.4554473054976789,
|
1452 |
+
"learning_rate": 3.5543235098868702e-06,
|
1453 |
+
"loss": 0.241,
|
1454 |
+
"step": 203
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.75,
|
1458 |
+
"grad_norm": 1.184805169962002,
|
1459 |
+
"learning_rate": 3.5409694312629193e-06,
|
1460 |
+
"loss": 0.2352,
|
1461 |
+
"step": 204
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.75,
|
1465 |
+
"eval_loss": 0.25444912910461426,
|
1466 |
+
"eval_runtime": 1745.7708,
|
1467 |
+
"eval_samples_per_second": 1.324,
|
1468 |
+
"eval_steps_per_second": 0.074,
|
1469 |
+
"step": 204
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 0.75,
|
1473 |
+
"grad_norm": 1.2973792749867632,
|
1474 |
+
"learning_rate": 3.527579323494055e-06,
|
1475 |
+
"loss": 0.2404,
|
1476 |
+
"step": 205
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 0.76,
|
1480 |
+
"grad_norm": 1.390330195755624,
|
1481 |
+
"learning_rate": 3.5141536500272494e-06,
|
1482 |
+
"loss": 0.2397,
|
1483 |
+
"step": 206
|
1484 |
+
},
|
1485 |
+
{
|
1486 |
+
"epoch": 0.76,
|
1487 |
+
"grad_norm": 1.2415077962351395,
|
1488 |
+
"learning_rate": 3.5006928755404467e-06,
|
1489 |
+
"loss": 0.2296,
|
1490 |
+
"step": 207
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.76,
|
1494 |
+
"grad_norm": 1.3223264932925407,
|
1495 |
+
"learning_rate": 3.4871974659264786e-06,
|
1496 |
+
"loss": 0.2332,
|
1497 |
+
"step": 208
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.77,
|
1501 |
+
"grad_norm": 1.4376836200586416,
|
1502 |
+
"learning_rate": 3.473667888276935e-06,
|
1503 |
+
"loss": 0.2361,
|
1504 |
+
"step": 209
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"epoch": 0.77,
|
1508 |
+
"grad_norm": 1.2495709137167788,
|
1509 |
+
"learning_rate": 3.4601046108660036e-06,
|
1510 |
+
"loss": 0.2351,
|
1511 |
+
"step": 210
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 0.78,
|
1515 |
+
"grad_norm": 1.4449247677336339,
|
1516 |
+
"learning_rate": 3.446508103134259e-06,
|
1517 |
+
"loss": 0.2373,
|
1518 |
+
"step": 211
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 0.78,
|
1522 |
+
"grad_norm": 1.3961526866418432,
|
1523 |
+
"learning_rate": 3.4328788356724135e-06,
|
1524 |
+
"loss": 0.2383,
|
1525 |
+
"step": 212
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 0.78,
|
1529 |
+
"grad_norm": 1.2766356071702671,
|
1530 |
+
"learning_rate": 3.419217280205032e-06,
|
1531 |
+
"loss": 0.2348,
|
1532 |
+
"step": 213
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.79,
|
1536 |
+
"grad_norm": 1.2201985305952152,
|
1537 |
+
"learning_rate": 3.4055239095742067e-06,
|
1538 |
+
"loss": 0.236,
|
1539 |
+
"step": 214
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.79,
|
1543 |
+
"grad_norm": 1.3670381437866368,
|
1544 |
+
"learning_rate": 3.3917991977231855e-06,
|
1545 |
+
"loss": 0.228,
|
1546 |
+
"step": 215
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 0.79,
|
1550 |
+
"grad_norm": 1.2724648753569285,
|
1551 |
+
"learning_rate": 3.378043619679974e-06,
|
1552 |
+
"loss": 0.2386,
|
1553 |
+
"step": 216
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 0.8,
|
1557 |
+
"grad_norm": 1.2826844172302947,
|
1558 |
+
"learning_rate": 3.364257651540891e-06,
|
1559 |
+
"loss": 0.2366,
|
1560 |
+
"step": 217
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 0.8,
|
1564 |
+
"grad_norm": 1.1767059777022655,
|
1565 |
+
"learning_rate": 3.3504417704540925e-06,
|
1566 |
+
"loss": 0.2251,
|
1567 |
+
"step": 218
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 0.8,
|
1571 |
+
"grad_norm": 1.3111513963454882,
|
1572 |
+
"learning_rate": 3.3365964546030544e-06,
|
1573 |
+
"loss": 0.2396,
|
1574 |
+
"step": 219
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.81,
|
1578 |
+
"grad_norm": 1.2617225478707708,
|
1579 |
+
"learning_rate": 3.322722183190025e-06,
|
1580 |
+
"loss": 0.2412,
|
1581 |
+
"step": 220
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.81,
|
1585 |
+
"grad_norm": 1.2183220743609309,
|
1586 |
+
"learning_rate": 3.308819436419437e-06,
|
1587 |
+
"loss": 0.2276,
|
1588 |
+
"step": 221
|
1589 |
+
},
|
1590 |
+
{
|
1591 |
+
"epoch": 0.82,
|
1592 |
+
"grad_norm": 1.31561824749082,
|
1593 |
+
"learning_rate": 3.2948886954812877e-06,
|
1594 |
+
"loss": 0.2404,
|
1595 |
+
"step": 222
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"epoch": 0.82,
|
1599 |
+
"grad_norm": 1.250087552624437,
|
1600 |
+
"learning_rate": 3.280930442534486e-06,
|
1601 |
+
"loss": 0.2263,
|
1602 |
+
"step": 223
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 0.82,
|
1606 |
+
"grad_norm": 1.2524310598377044,
|
1607 |
+
"learning_rate": 3.26694516069016e-06,
|
1608 |
+
"loss": 0.2368,
|
1609 |
+
"step": 224
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 0.83,
|
1613 |
+
"grad_norm": 1.3487266981725987,
|
1614 |
+
"learning_rate": 3.252933333994942e-06,
|
1615 |
+
"loss": 0.2243,
|
1616 |
+
"step": 225
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 0.83,
|
1620 |
+
"grad_norm": 1.2427013509424278,
|
1621 |
+
"learning_rate": 3.238895447414211e-06,
|
1622 |
+
"loss": 0.2366,
|
1623 |
+
"step": 226
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.83,
|
1627 |
+
"grad_norm": 1.268723527146989,
|
1628 |
+
"learning_rate": 3.2248319868153067e-06,
|
1629 |
+
"loss": 0.2262,
|
1630 |
+
"step": 227
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"epoch": 0.84,
|
1634 |
+
"grad_norm": 1.2476040692827028,
|
1635 |
+
"learning_rate": 3.210743438950718e-06,
|
1636 |
+
"loss": 0.234,
|
1637 |
+
"step": 228
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 0.84,
|
1641 |
+
"grad_norm": 1.2944243964732431,
|
1642 |
+
"learning_rate": 3.196630291441231e-06,
|
1643 |
+
"loss": 0.2261,
|
1644 |
+
"step": 229
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 0.84,
|
1648 |
+
"grad_norm": 1.2348938264581308,
|
1649 |
+
"learning_rate": 3.182493032759053e-06,
|
1650 |
+
"loss": 0.2368,
|
1651 |
+
"step": 230
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 0.85,
|
1655 |
+
"grad_norm": 1.3877133957904717,
|
1656 |
+
"learning_rate": 3.168332152210909e-06,
|
1657 |
+
"loss": 0.2342,
|
1658 |
+
"step": 231
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.85,
|
1662 |
+
"grad_norm": 1.2088837041711673,
|
1663 |
+
"learning_rate": 3.154148139921102e-06,
|
1664 |
+
"loss": 0.222,
|
1665 |
+
"step": 232
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.86,
|
1669 |
+
"grad_norm": 1.4750513048080165,
|
1670 |
+
"learning_rate": 3.1399414868145506e-06,
|
1671 |
+
"loss": 0.2301,
|
1672 |
+
"step": 233
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 0.86,
|
1676 |
+
"grad_norm": 1.2097458338635088,
|
1677 |
+
"learning_rate": 3.1257126845998e-06,
|
1678 |
+
"loss": 0.2365,
|
1679 |
+
"step": 234
|
1680 |
+
},
|
1681 |
+
{
|
1682 |
+
"epoch": 0.86,
|
1683 |
+
"grad_norm": 1.3570468614316236,
|
1684 |
+
"learning_rate": 3.1114622257520004e-06,
|
1685 |
+
"loss": 0.2275,
|
1686 |
+
"step": 235
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"epoch": 0.87,
|
1690 |
+
"grad_norm": 1.2331713108579336,
|
1691 |
+
"learning_rate": 3.0971906034958616e-06,
|
1692 |
+
"loss": 0.2193,
|
1693 |
+
"step": 236
|
1694 |
+
},
|
1695 |
+
{
|
1696 |
+
"epoch": 0.87,
|
1697 |
+
"grad_norm": 1.330924002893457,
|
1698 |
+
"learning_rate": 3.0828983117885856e-06,
|
1699 |
+
"loss": 0.2258,
|
1700 |
+
"step": 237
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 0.87,
|
1704 |
+
"grad_norm": 1.2713775149937143,
|
1705 |
+
"learning_rate": 3.0685858453027668e-06,
|
1706 |
+
"loss": 0.2287,
|
1707 |
+
"step": 238
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.88,
|
1711 |
+
"grad_norm": 1.3460227514964078,
|
1712 |
+
"learning_rate": 3.05425369940927e-06,
|
1713 |
+
"loss": 0.2268,
|
1714 |
+
"step": 239
|
1715 |
+
},
|
1716 |
+
{
|
1717 |
+
"epoch": 0.88,
|
1718 |
+
"grad_norm": 1.3124465221253792,
|
1719 |
+
"learning_rate": 3.0399023701600903e-06,
|
1720 |
+
"loss": 0.2237,
|
1721 |
+
"step": 240
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"epoch": 0.89,
|
1725 |
+
"grad_norm": 1.2621420000416141,
|
1726 |
+
"learning_rate": 3.0255323542711784e-06,
|
1727 |
+
"loss": 0.221,
|
1728 |
+
"step": 241
|
1729 |
+
},
|
1730 |
+
{
|
1731 |
+
"epoch": 0.89,
|
1732 |
+
"grad_norm": 1.3207975689997922,
|
1733 |
+
"learning_rate": 3.011144149105251e-06,
|
1734 |
+
"loss": 0.2177,
|
1735 |
+
"step": 242
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"epoch": 0.89,
|
1739 |
+
"grad_norm": 1.3364690610440046,
|
1740 |
+
"learning_rate": 2.996738252654577e-06,
|
1741 |
+
"loss": 0.2266,
|
1742 |
+
"step": 243
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 0.9,
|
1746 |
+
"grad_norm": 1.3069082882086795,
|
1747 |
+
"learning_rate": 2.9823151635237424e-06,
|
1748 |
+
"loss": 0.2274,
|
1749 |
+
"step": 244
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.9,
|
1753 |
+
"grad_norm": 1.402608898892496,
|
1754 |
+
"learning_rate": 2.9678753809123884e-06,
|
1755 |
+
"loss": 0.233,
|
1756 |
+
"step": 245
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 0.9,
|
1760 |
+
"grad_norm": 1.3349783439901974,
|
1761 |
+
"learning_rate": 2.9534194045979397e-06,
|
1762 |
+
"loss": 0.2198,
|
1763 |
+
"step": 246
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 0.91,
|
1767 |
+
"grad_norm": 1.3319911413244738,
|
1768 |
+
"learning_rate": 2.938947734918302e-06,
|
1769 |
+
"loss": 0.2241,
|
1770 |
+
"step": 247
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 0.91,
|
1774 |
+
"grad_norm": 1.2836113523110935,
|
1775 |
+
"learning_rate": 2.924460872754547e-06,
|
1776 |
+
"loss": 0.2247,
|
1777 |
+
"step": 248
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 0.91,
|
1781 |
+
"grad_norm": 1.3420053396118825,
|
1782 |
+
"learning_rate": 2.9099593195135743e-06,
|
1783 |
+
"loss": 0.2245,
|
1784 |
+
"step": 249
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 0.92,
|
1788 |
+
"grad_norm": 1.3018957576647208,
|
1789 |
+
"learning_rate": 2.8954435771107604e-06,
|
1790 |
+
"loss": 0.2198,
|
1791 |
+
"step": 250
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.92,
|
1795 |
+
"grad_norm": 1.493108819116986,
|
1796 |
+
"learning_rate": 2.8809141479525843e-06,
|
1797 |
+
"loss": 0.2261,
|
1798 |
+
"step": 251
|
1799 |
+
},
|
1800 |
+
{
|
1801 |
+
"epoch": 0.93,
|
1802 |
+
"grad_norm": 1.2240817395656585,
|
1803 |
+
"learning_rate": 2.8663715349192388e-06,
|
1804 |
+
"loss": 0.2182,
|
1805 |
+
"step": 252
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 0.93,
|
1809 |
+
"grad_norm": 1.3972966685231503,
|
1810 |
+
"learning_rate": 2.8518162413472266e-06,
|
1811 |
+
"loss": 0.2289,
|
1812 |
+
"step": 253
|
1813 |
+
},
|
1814 |
+
{
|
1815 |
+
"epoch": 0.93,
|
1816 |
+
"grad_norm": 1.3158850314947335,
|
1817 |
+
"learning_rate": 2.8372487710119374e-06,
|
1818 |
+
"loss": 0.2286,
|
1819 |
+
"step": 254
|
1820 |
+
},
|
1821 |
+
{
|
1822 |
+
"epoch": 0.94,
|
1823 |
+
"grad_norm": 1.295772538693981,
|
1824 |
+
"learning_rate": 2.8226696281102134e-06,
|
1825 |
+
"loss": 0.2157,
|
1826 |
+
"step": 255
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 0.94,
|
1830 |
+
"grad_norm": 1.34085577207588,
|
1831 |
+
"learning_rate": 2.8080793172428965e-06,
|
1832 |
+
"loss": 0.2223,
|
1833 |
+
"step": 256
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 0.94,
|
1837 |
+
"grad_norm": 1.3610764715193495,
|
1838 |
+
"learning_rate": 2.7934783433973672e-06,
|
1839 |
+
"loss": 0.2227,
|
1840 |
+
"step": 257
|
1841 |
+
},
|
1842 |
+
{
|
1843 |
+
"epoch": 0.95,
|
1844 |
+
"grad_norm": 1.2629712566442401,
|
1845 |
+
"learning_rate": 2.778867211930061e-06,
|
1846 |
+
"loss": 0.2263,
|
1847 |
+
"step": 258
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"epoch": 0.95,
|
1851 |
+
"grad_norm": 1.2782582856568219,
|
1852 |
+
"learning_rate": 2.764246428548983e-06,
|
1853 |
+
"loss": 0.2234,
|
1854 |
+
"step": 259
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 0.96,
|
1858 |
+
"grad_norm": 1.2621019245043847,
|
1859 |
+
"learning_rate": 2.7496164992961995e-06,
|
1860 |
+
"loss": 0.2177,
|
1861 |
+
"step": 260
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 0.96,
|
1865 |
+
"grad_norm": 1.2033350046761524,
|
1866 |
+
"learning_rate": 2.7349779305303263e-06,
|
1867 |
+
"loss": 0.2226,
|
1868 |
+
"step": 261
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 0.96,
|
1872 |
+
"grad_norm": 1.361220136423699,
|
1873 |
+
"learning_rate": 2.720331228909005e-06,
|
1874 |
+
"loss": 0.2179,
|
1875 |
+
"step": 262
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 0.97,
|
1879 |
+
"grad_norm": 1.3715434561254194,
|
1880 |
+
"learning_rate": 2.7056769013713623e-06,
|
1881 |
+
"loss": 0.2231,
|
1882 |
+
"step": 263
|
1883 |
+
},
|
1884 |
+
{
|
1885 |
+
"epoch": 0.97,
|
1886 |
+
"grad_norm": 1.1330086039392537,
|
1887 |
+
"learning_rate": 2.691015455120468e-06,
|
1888 |
+
"loss": 0.2164,
|
1889 |
+
"step": 264
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 0.97,
|
1893 |
+
"grad_norm": 1.2694263709270768,
|
1894 |
+
"learning_rate": 2.6763473976057776e-06,
|
1895 |
+
"loss": 0.2127,
|
1896 |
+
"step": 265
|
1897 |
+
},
|
1898 |
+
{
|
1899 |
+
"epoch": 0.98,
|
1900 |
+
"grad_norm": 1.3274231972419466,
|
1901 |
+
"learning_rate": 2.6616732365055713e-06,
|
1902 |
+
"loss": 0.2092,
|
1903 |
+
"step": 266
|
1904 |
+
},
|
1905 |
+
{
|
1906 |
+
"epoch": 0.98,
|
1907 |
+
"grad_norm": 1.276485394682339,
|
1908 |
+
"learning_rate": 2.64699347970938e-06,
|
1909 |
+
"loss": 0.2206,
|
1910 |
+
"step": 267
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 0.98,
|
1914 |
+
"grad_norm": 1.33640777595863,
|
1915 |
+
"learning_rate": 2.6323086353004077e-06,
|
1916 |
+
"loss": 0.2201,
|
1917 |
+
"step": 268
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.99,
|
1921 |
+
"grad_norm": 1.2867150222472765,
|
1922 |
+
"learning_rate": 2.6176192115379494e-06,
|
1923 |
+
"loss": 0.2176,
|
1924 |
+
"step": 269
|
1925 |
+
},
|
1926 |
+
{
|
1927 |
+
"epoch": 0.99,
|
1928 |
+
"grad_norm": 1.220258552427881,
|
1929 |
+
"learning_rate": 2.602925716839795e-06,
|
1930 |
+
"loss": 0.2131,
|
1931 |
+
"step": 270
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 1.0,
|
1935 |
+
"grad_norm": 1.3301323985426015,
|
1936 |
+
"learning_rate": 2.588228659764632e-06,
|
1937 |
+
"loss": 0.2244,
|
1938 |
+
"step": 271
|
1939 |
+
},
|
1940 |
+
{
|
1941 |
+
"epoch": 1.0,
|
1942 |
+
"grad_norm": 1.2313785507924382,
|
1943 |
+
"learning_rate": 2.573528548994449e-06,
|
1944 |
+
"loss": 0.2192,
|
1945 |
+
"step": 272
|
1946 |
+
},
|
1947 |
+
{
|
1948 |
+
"epoch": 1.0,
|
1949 |
+
"eval_loss": 0.22680288553237915,
|
1950 |
+
"eval_runtime": 1744.6696,
|
1951 |
+
"eval_samples_per_second": 1.325,
|
1952 |
+
"eval_steps_per_second": 0.074,
|
1953 |
+
"step": 272
|
1954 |
+
}
|
1955 |
+
],
|
1956 |
+
"logging_steps": 1,
|
1957 |
+
"max_steps": 544,
|
1958 |
+
"num_input_tokens_seen": 0,
|
1959 |
+
"num_train_epochs": 2,
|
1960 |
+
"save_steps": 272,
|
1961 |
+
"total_flos": 256045146439680.0,
|
1962 |
+
"train_batch_size": 2,
|
1963 |
+
"trial_name": null,
|
1964 |
+
"trial_params": null
|
1965 |
+
}
|
checkpoint-272/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01a4c76e5fdc09ec01dc7e8ead7778553f5e617c35ba83b4354ef7a547fbf2ae
|
3 |
+
size 7352
|
checkpoint-272/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-544/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-math/MetaMath-Mistral-7B",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.38.2",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32001
|
26 |
+
}
|
checkpoint-544/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.38.2"
|
7 |
+
}
|
checkpoint-544/global_step544/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0b635a6f6c93873bb79a1f6f7e80dcca3787ce0fda8d4098c2d40359e2fa073
|
3 |
+
size 4831618059
|
checkpoint-544/global_step544/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b42f03ac86e8e2a33c86c2e5202e8c4acdd6dc200c2f8c9a6c8e50f0318529df
|
3 |
+
size 4831618059
|
checkpoint-544/global_step544/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c92391ed04ed2926f1f28fdc573122425756b249bc2d21b2851b78baea89cd3b
|
3 |
+
size 4831618059
|
checkpoint-544/global_step544/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b2be3bc10a6a7a2dc37c52a0587e3fc56976e3e13b2298ddde6af69826afeeb
|
3 |
+
size 4831618059
|
checkpoint-544/global_step544/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fdf1bf6bfe56ee728ffa31b8604f170adb5a5980a8b24f4aa662dfcd471d4f4
|
3 |
+
size 4831618059
|
checkpoint-544/global_step544/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3684e3dd7f9c957ee35cc90c43f7ff56a82ab875b36af71f12eb184e60b603c3
|
3 |
+
size 4831618059
|
checkpoint-544/global_step544/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78c2672a287caac96da9b241ec70d12afbb0cf5d4540829c5f52d7fff6fa98a8
|
3 |
+
size 4831618059
|
checkpoint-544/global_step544/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed24fdc0dc351ee4c1ad70b88af052fbf700353644b65b86afd6910ce918f61e
|
3 |
+
size 4831618059
|
checkpoint-544/global_step544/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ebb6b14e237e3d7ee8c339b87f536906ab23894cfd3c6ef4496c89e4053394a
|
3 |
+
size 4831618059
|
checkpoint-544/global_step544/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05f780232f1fbb656afded0ffeeb734c028ac6960f56536fb5bb144e06343358
|
3 |
+
size 153829
|