schnik's picture
update README with explaination and Gradio interface with examples
8f9d4fd
from torch.utils.data import Dataset
import torch
from torch import nn, Tensor
import torch.nn.functional as F
import torchaudio
import os
import logging
from torchvision.models import resnet50, ResNet50_Weights, resnet152, resnet18, resnet34, ResNet152_Weights
from PIL import Image
from time import strftime
import math
import numpy as np
import moviepy.editor as mpe
class VideoDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
self.data_map = []
dir_map = os.listdir(data_dir)
for d in dir_map:
name, extension = os.path.splitext(d)
if extension == ".mp4":
self.data_map.append({"video": os.path.join(data_dir, d)})
def __len__(self):
return len(self.data_map)
def __getitem__(self, idx):
return self.data_map[idx]["video"]
# input: video_path, output: wav_music
class VideoToT5(nn.Module):
def __init__(self,
device: str,
video_extraction_framerate: int,
encoder_input_dimension: int,
encoder_output_dimension: int,
encoder_heads: int,
encoder_dim_feedforward: int,
encoder_layers: int
):
super().__init__()
self.video_extraction_framerate = video_extraction_framerate
self.video_feature_extractor = VideoFeatureExtractor(video_extraction_framerate=video_extraction_framerate,
device=device)
self.video_encoder = VideoEncoder(
device,
encoder_input_dimension,
encoder_output_dimension,
encoder_heads,
encoder_dim_feedforward,
encoder_layers
)
def forward(self, video_paths: [str]):
image_embeddings = []
for video_path in video_paths:
video = mpe.VideoFileClip(video_path)
video_embedding = self.video_feature_extractor(video)
image_embeddings.append(video_embedding)
video_embedding = torch.stack(
image_embeddings) # resulting shape: [batch_size, video_extraction_framerate, resnet_output_dimension]
# not used, gives worse results!
# video_embeddings = torch.mean(video_embeddings, 0, True) # average out all image embedding to one video embedding
t5_embeddings = self.video_encoder(video_embedding) # T5 output: [batch_size, num_tokens,
# t5_embedding_size]
return t5_embeddings
class VideoEncoder(nn.Module):
def __init__(self,
device: str,
encoder_input_dimension: int,
encoder_output_dimension: int,
encoder_heads: int,
encoder_dim_feedforward: int,
encoder_layers: int
):
super().__init__()
self.device = device
self.encoder = (nn.TransformerEncoder(
nn.TransformerEncoderLayer(
d_model=encoder_input_dimension,
nhead=encoder_heads,
dim_feedforward=encoder_dim_feedforward
),
num_layers=encoder_layers,
)
).to(device)
# linear layer to match T5 embedding dimension
self.linear = (nn.Linear(
in_features=encoder_input_dimension,
out_features=encoder_output_dimension)
.to(device))
def forward(self, x):
assert x.dim() == 3
x = torch.transpose(x, 0, 1) # encoder expects [sequence_length, batch_size, embedding_dimension]
x = self.encoder(x) # encoder forward pass
x = self.linear(x) # forward pass through the linear layer
x = torch.transpose(x, 0, 1) # shape: [batch_size, sequence_length, embedding_dimension]
return x
class VideoFeatureExtractor(nn.Module):
def __init__(self,
device: str,
video_extraction_framerate: int = 1,
resnet_output_dimension: int = 2048):
super().__init__()
self.device = device
# using a ResNet trained on ImageNet
self.resnet = resnet50(weights="IMAGENET1K_V2").eval()
self.resnet = torch.nn.Sequential(*(list(self.resnet.children())[:-1])).to(device) # remove ResNet layer
self.resnet_preprocessor = ResNet50_Weights.DEFAULT.transforms().to(device)
self.video_extraction_framerate = video_extraction_framerate # setting the fps at which the video is processed
self.positional_encoder = PositionalEncoding(resnet_output_dimension).to(device)
def forward(self, video: mpe.VideoFileClip):
embeddings = []
for i in range(0, 30 * self.video_extraction_framerate):
i = video.get_frame(i) # get frame as numpy array
i = Image.fromarray(i) # create PIL image from numpy array
i = self.resnet_preprocessor(i) # preprocess image
i = i.to(self.device)
i = i.unsqueeze(0) # adding a batch dimension
i = self.resnet(i).squeeze() # ResNet forward pass
i = i.squeeze()
embeddings.append(i) # collect embeddings
embeddings = torch.stack(embeddings) # concatenate all frame embeddings into one video embedding
embeddings = embeddings.unsqueeze(1)
embeddings = self.positional_encoder(embeddings) # apply positional encoding with a sequence length of 30
embeddings = embeddings.squeeze()
return embeddings
# from https://pytorch.org/tutorials/beginner/transformer_tutorial.html
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_length: int = 5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_length, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x: Tensor) -> Tensor:
x = x + self.pe[:x.size(0)]
return self.dropout(x)
def freeze_model(model: nn.Module):
for param in model.parameters():
param.requires_grad = False
model.eval()
def split_dataset_randomly(dataset, validation_split: float, test_split: float, seed: int = None):
dataset_size = len(dataset)
indices = list(range(dataset_size))
datapoints_validation = int(np.floor(validation_split * dataset_size))
datapoints_testing = int(np.floor(test_split * dataset_size))
if seed:
np.random.seed(seed)
np.random.shuffle(indices) # in-place operation
training = indices[datapoints_validation + datapoints_testing:]
validation = indices[datapoints_validation:datapoints_testing + datapoints_validation]
testing = indices[:datapoints_testing]
assert len(validation) == datapoints_validation, "Validation set length incorrect"
assert len(testing) == datapoints_testing, "Testing set length incorrect"
assert len(training) == dataset_size - (datapoints_testing + datapoints_testing), "Training set length incorrect"
assert not any([item in training for item in validation]), "Training and Validation overlap"
assert not any([item in training for item in testing]), "Training and Testing overlap"
assert not any([item in validation for item in testing]), "Validation and Testing overlap"
return training, validation, testing
### private function from audiocraft.solver.musicgen.py => _compute_cross_entropy
def compute_cross_entropy(logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor):
"""Compute cross entropy between multi-codebook targets and model's logits.
The cross entropy is computed per codebook to provide codebook-level cross entropy.
Valid timesteps for each of the codebook are pulled from the mask, where invalid
timesteps are set to 0.
Args:
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
targets (torch.Tensor): Target codes, of shape [B, K, T].
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
Returns:
ce (torch.Tensor): Cross entropy averaged over the codebooks
ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
"""
B, K, T = targets.shape
assert logits.shape[:-1] == targets.shape
assert mask.shape == targets.shape
ce = torch.zeros([], device=targets.device)
ce_per_codebook = []
for k in range(K):
logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
targets_k = targets[:, k, ...].contiguous().view(-1) # [B x T]
mask_k = mask[:, k, ...].contiguous().view(-1) # [B x T]
ce_targets = targets_k[mask_k]
ce_logits = logits_k[mask_k]
q_ce = F.cross_entropy(ce_logits, ce_targets)
ce += q_ce
ce_per_codebook.append(q_ce.detach())
# average cross entropy across codebooks
ce = ce / K
return ce, ce_per_codebook
def generate_audio_codes(audio_paths: [str],
audiocraft_compression_model: torch.nn.Module,
device: str) -> torch.Tensor:
audio_duration = 30
encodec_sample_rate = audiocraft_compression_model.sample_rate
torch_audios = []
for audio_path in audio_paths:
wav, original_sample_rate = torchaudio.load(audio_path) # load audio from file
wav = torchaudio.functional.resample(wav, original_sample_rate,
encodec_sample_rate) # cast audio to model sample rate
wav = wav[:, :encodec_sample_rate * audio_duration] # enforce an exact audio length of 30 seconds
assert len(wav.shape) == 2, f"audio data is not of shape [channels, duration]"
assert wav.shape[0] == 2, "audio data should be in stereo, but has not 2 channels"
torch_audios.append(wav)
torch_audios = torch.stack(torch_audios)
torch_audios = torch_audios.to(device)
with torch.no_grad():
gen_audio = audiocraft_compression_model.encode(torch_audios)
codes, scale = gen_audio
assert scale is None
return codes
def create_condition_tensors(
video_embeddings: torch.Tensor,
batch_size: int,
video_extraction_framerate: int,
device: str
):
# model T5 mask
mask = torch.ones((batch_size, video_extraction_framerate * 30), dtype=torch.int).to(device)
condition_tensors = {
'description': (video_embeddings, mask)
}
return condition_tensors
def get_current_timestamp():
return strftime("%Y_%m_%d___%H_%M_%S")
def configure_logging(output_dir: str, filename: str, log_level):
# create logs folder, if not existing
os.makedirs(output_dir, exist_ok=True)
level = getattr(logging, log_level)
file_path = output_dir + "/" + filename
logging.basicConfig(filename=file_path, encoding='utf-8', level=level)
logger = logging.getLogger()
# only add a StreamHandler if it is not present yet
if len(logger.handlers) <= 1:
logger.addHandler(logging.StreamHandler())