ashawkey's picture
fix lr strategy
76ff91e
raw
history blame
No virus
8.03 kB
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler
# suppress partial model loading warning
logging.set_verbosity_error()
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
class StableDiffusion(nn.Module):
def __init__(self, device):
super().__init__()
try:
with open('./TOKEN', 'r') as f:
self.token = f.read().replace('\n', '') # remove the last \n!
print(f'[INFO] loaded hugging face access token from ./TOKEN!')
except FileNotFoundError as e:
self.token = True
print(f'[INFO] try to load hugging face access token from the default place, make sure you have run `huggingface-cli login`.')
self.device = device
self.num_train_timesteps = 1000
self.min_step = int(self.num_train_timesteps * 0.02)
self.max_step = int(self.num_train_timesteps * 0.98)
print(f'[INFO] loading stable diffusion...')
# 1. Load the autoencoder model which will be used to decode the latents into image space.
self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae", use_auth_token=self.token).to(self.device)
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(self.device)
# 3. The UNet model for generating the latents.
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet", use_auth_token=self.token).to(self.device)
# 4. Create a scheduler for inference
self.scheduler = PNDMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=self.num_train_timesteps)
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
print(f'[INFO] loaded stable diffusion!')
def get_text_embeds(self, prompt):
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
with torch.no_grad():
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer([''] * len(prompt), padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt')
with torch.no_grad():
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def train_step(self, text_embeddings, pred_rgb, guidance_scale=100):
# interp to 512x512 to be fed into vae.
# _t = time.time()
pred_rgb_512 = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
# torch.cuda.synchronize(); print(f'[TIME] guiding: interp {time.time() - _t:.4f}s')
# timestep ~ U(0.02, 0.98) to avoid very high/low noise level
t = torch.randint(self.min_step, self.max_step + 1, [1], dtype=torch.long, device=self.device)
# encode image into latents with vae, requires grad!
# _t = time.time()
latents = self.encode_imgs(pred_rgb_512)
# torch.cuda.synchronize(); print(f'[TIME] guiding: vae enc {time.time() - _t:.4f}s')
# predict the noise residual with unet, NO grad!
# _t = time.time()
with torch.no_grad():
# add noise
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2)
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# torch.cuda.synchronize(); print(f'[TIME] guiding: unet {time.time() - _t:.4f}s')
# perform guidance (high scale from paper!)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# w(t), sigma_t^2
w = (1 - self.alphas[t])
# w = self.alphas[t] ** 0.5 * (1 - self.alphas[t])
grad = w * (noise_pred - noise)
# clip grad for stable training?
# grad = grad.clamp(-1, 1)
# manually backward, since we omitted an item in grad and cannot simply autodiff.
# _t = time.time()
latents.backward(gradient=grad, retain_graph=True)
# torch.cuda.synchronize(); print(f'[TIME] guiding: backward {time.time() - _t:.4f}s')
return 0 # dummy loss value
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5, latents=None):
if latents is None:
latents = torch.randn((text_embeddings.shape[0] // 2, self.unet.in_channels, height // 8, width // 8), device=self.device)
self.scheduler.set_timesteps(num_inference_steps)
with torch.autocast('cuda'):
for i, t in enumerate(self.scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)['sample']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents)['prev_sample']
return latents
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
with torch.no_grad():
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def encode_imgs(self, imgs):
# imgs: [B, 3, H, W]
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.sample() * 0.18215
return latents
def prompt_to_img(self, prompts, height=512, width=512, num_inference_steps=50, guidance_scale=7.5, latents=None):
if isinstance(prompts, str):
prompts = [prompts]
# Prompts -> text embeds
text_embeds = self.get_text_embeds(prompts) # [2, 77, 768]
# Text embeds -> img latents
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale) # [1, 4, 64, 64]
# Img latents -> imgs
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype('uint8')
return imgs
if __name__ == '__main__':
import argparse
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument('prompt', type=str)
parser.add_argument('-H', type=int, default=512)
parser.add_argument('-W', type=int, default=512)
parser.add_argument('--steps', type=int, default=50)
opt = parser.parse_args()
device = torch.device('cuda')
sd = StableDiffusion(device)
imgs = sd.prompt_to_img(opt.prompt, opt.H, opt.W, opt.steps)
# visualize image
plt.imshow(imgs[0])
plt.show()