|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: PoliteT5Small |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# PoliteT5Small |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3505 |
|
- Toxicity Ratio: 0.3158 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.01 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 75 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Toxicity Ratio | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:| |
|
| No log | 1.0 | 22 | 0.6642 | 0.3158 | |
|
| No log | 2.0 | 44 | 0.6347 | 0.3158 | |
|
| 0.9343 | 3.0 | 66 | 0.6623 | 0.3158 | |
|
| 0.9343 | 4.0 | 88 | 0.6737 | 0.3070 | |
|
| 0.3783 | 5.0 | 110 | 0.7201 | 0.2982 | |
|
| 0.3783 | 6.0 | 132 | 0.7606 | 0.3596 | |
|
| 0.2536 | 7.0 | 154 | 0.7567 | 0.2807 | |
|
| 0.2536 | 8.0 | 176 | 0.8618 | 0.3070 | |
|
| 0.2536 | 9.0 | 198 | 0.8444 | 0.3158 | |
|
| 0.1839 | 10.0 | 220 | 0.8257 | 0.3333 | |
|
| 0.1839 | 11.0 | 242 | 0.8643 | 0.3158 | |
|
| 0.1246 | 12.0 | 264 | 0.8334 | 0.3421 | |
|
| 0.1246 | 13.0 | 286 | 0.8895 | 0.3246 | |
|
| 0.1042 | 14.0 | 308 | 0.9631 | 0.2982 | |
|
| 0.1042 | 15.0 | 330 | 0.9004 | 0.3070 | |
|
| 0.0929 | 16.0 | 352 | 0.8878 | 0.2982 | |
|
| 0.0929 | 17.0 | 374 | 0.9009 | 0.2982 | |
|
| 0.0929 | 18.0 | 396 | 0.9762 | 0.3158 | |
|
| 0.0745 | 19.0 | 418 | 0.9296 | 0.2982 | |
|
| 0.0745 | 20.0 | 440 | 0.9429 | 0.3246 | |
|
| 0.0668 | 21.0 | 462 | 0.9779 | 0.3158 | |
|
| 0.0668 | 22.0 | 484 | 0.9731 | 0.2982 | |
|
| 0.0494 | 23.0 | 506 | 0.9640 | 0.3158 | |
|
| 0.0494 | 24.0 | 528 | 0.9984 | 0.2982 | |
|
| 0.0425 | 25.0 | 550 | 0.9966 | 0.3070 | |
|
| 0.0425 | 26.0 | 572 | 0.9861 | 0.3246 | |
|
| 0.0425 | 27.0 | 594 | 1.0335 | 0.3333 | |
|
| 0.0432 | 28.0 | 616 | 1.0358 | 0.2982 | |
|
| 0.0432 | 29.0 | 638 | 1.0244 | 0.3158 | |
|
| 0.0328 | 30.0 | 660 | 1.0050 | 0.3158 | |
|
| 0.0328 | 31.0 | 682 | 0.9838 | 0.2982 | |
|
| 0.0277 | 32.0 | 704 | 1.0576 | 0.3158 | |
|
| 0.0277 | 33.0 | 726 | 1.0719 | 0.3070 | |
|
| 0.0277 | 34.0 | 748 | 1.0851 | 0.3246 | |
|
| 0.0194 | 35.0 | 770 | 0.9992 | 0.3246 | |
|
| 0.0194 | 36.0 | 792 | 1.1454 | 0.3333 | |
|
| 0.0145 | 37.0 | 814 | 1.1179 | 0.3158 | |
|
| 0.0145 | 38.0 | 836 | 1.0586 | 0.3158 | |
|
| 0.0157 | 39.0 | 858 | 1.0638 | 0.3333 | |
|
| 0.0157 | 40.0 | 880 | 1.1544 | 0.3333 | |
|
| 0.0114 | 41.0 | 902 | 1.1529 | 0.2895 | |
|
| 0.0114 | 42.0 | 924 | 1.2017 | 0.3246 | |
|
| 0.0114 | 43.0 | 946 | 1.0783 | 0.3333 | |
|
| 0.0096 | 44.0 | 968 | 1.1984 | 0.3333 | |
|
| 0.0096 | 45.0 | 990 | 1.1839 | 0.3158 | |
|
| 0.0094 | 46.0 | 1012 | 1.1178 | 0.3246 | |
|
| 0.0094 | 47.0 | 1034 | 1.2424 | 0.3070 | |
|
| 0.0065 | 48.0 | 1056 | 1.1740 | 0.3158 | |
|
| 0.0065 | 49.0 | 1078 | 0.9860 | 0.3070 | |
|
| 0.0081 | 50.0 | 1100 | 1.2554 | 0.3333 | |
|
| 0.0081 | 51.0 | 1122 | 1.2024 | 0.2895 | |
|
| 0.0081 | 52.0 | 1144 | 1.2440 | 0.2807 | |
|
| 0.0035 | 53.0 | 1166 | 1.2392 | 0.3070 | |
|
| 0.0035 | 54.0 | 1188 | 1.3189 | 0.3070 | |
|
| 0.0033 | 55.0 | 1210 | 1.2635 | 0.2895 | |
|
| 0.0033 | 56.0 | 1232 | 1.2367 | 0.2982 | |
|
| 0.0033 | 57.0 | 1254 | 1.2691 | 0.3070 | |
|
| 0.0033 | 58.0 | 1276 | 1.2762 | 0.3070 | |
|
| 0.0033 | 59.0 | 1298 | 1.2492 | 0.2982 | |
|
| 0.0021 | 60.0 | 1320 | 1.2530 | 0.3070 | |
|
| 0.0021 | 61.0 | 1342 | 1.2754 | 0.3158 | |
|
| 0.002 | 62.0 | 1364 | 1.3817 | 0.3070 | |
|
| 0.002 | 63.0 | 1386 | 1.3887 | 0.3158 | |
|
| 0.0016 | 64.0 | 1408 | 1.3172 | 0.3246 | |
|
| 0.0016 | 65.0 | 1430 | 1.3481 | 0.3158 | |
|
| 0.0023 | 66.0 | 1452 | 1.3109 | 0.3246 | |
|
| 0.0023 | 67.0 | 1474 | 1.2907 | 0.3246 | |
|
| 0.0023 | 68.0 | 1496 | 1.2926 | 0.3246 | |
|
| 0.0014 | 69.0 | 1518 | 1.3122 | 0.3158 | |
|
| 0.0014 | 70.0 | 1540 | 1.3354 | 0.3158 | |
|
| 0.0008 | 71.0 | 1562 | 1.3440 | 0.3158 | |
|
| 0.0008 | 72.0 | 1584 | 1.3367 | 0.3158 | |
|
| 0.0011 | 73.0 | 1606 | 1.3452 | 0.3158 | |
|
| 0.0011 | 74.0 | 1628 | 1.3514 | 0.3158 | |
|
| 0.0011 | 75.0 | 1650 | 1.3505 | 0.3158 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|