Doogie's picture
update model card README.md
09ea684
|
raw
history blame
4.84 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  name: Waynehills-STT-doogie-server

Waynehills-STT-doogie-server

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7114
  • Wer: 1.0056

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Wer
0.0734 1.01 100 1.7114 1.0056
0.074 2.02 200 1.7114 1.0056
0.0707 3.03 300 1.7114 1.0056
0.0727 4.04 400 1.7114 1.0056
0.076 5.05 500 1.7114 1.0056
0.0713 6.06 600 1.7114 1.0056
0.0709 7.07 700 1.7114 1.0056
0.0721 8.08 800 1.7114 1.0056
0.0761 9.09 900 1.7114 1.0056
0.0724 10.1 1000 1.7114 1.0056
0.0749 11.11 1100 1.7114 1.0056
0.0746 12.12 1200 1.7114 1.0056
0.0756 13.13 1300 1.7114 1.0056
0.0712 14.14 1400 1.7114 1.0056
0.0704 15.15 1500 1.7114 1.0056
0.0698 16.16 1600 1.7114 1.0056
0.0715 17.17 1700 1.7114 1.0056
0.0743 18.18 1800 1.7114 1.0056
0.0743 19.19 1900 1.7114 1.0056
0.0745 20.2 2000 1.7114 1.0056
0.0702 21.21 2100 1.7114 1.0056
0.0717 22.22 2200 1.7114 1.0056
0.0673 23.23 2300 1.7114 1.0056
0.0701 24.24 2400 1.7114 1.0056
0.0754 25.25 2500 1.7114 1.0056
0.0677 26.26 2600 1.7114 1.0056
0.0751 27.27 2700 1.7114 1.0056
0.0828 28.28 2800 1.7114 1.0056
0.0714 29.29 2900 1.7114 1.0056
0.0735 30.3 3000 1.7114 1.0056
0.0724 31.31 3100 1.7114 1.0056
0.0777 32.32 3200 1.7114 1.0056
0.0747 33.33 3300 1.7114 1.0056
0.0724 34.34 3400 1.7114 1.0056
0.0717 35.35 3500 1.7114 1.0056
0.0723 36.36 3600 1.7114 1.0056
0.0797 37.37 3700 1.7114 1.0056
0.0693 38.38 3800 1.7114 1.0056
0.0748 39.39 3900 1.7114 1.0056
0.0739 40.4 4000 1.7114 1.0056
0.0701 41.41 4100 1.7114 1.0056
0.079 42.42 4200 1.7114 1.0056
0.0753 43.43 4300 1.7114 1.0056
0.0707 44.44 4400 1.7114 1.0056
0.0724 45.45 4500 1.7114 1.0056
0.0667 46.46 4600 1.7114 1.0056
0.077 47.47 4700 1.7114 1.0056
0.0716 48.48 4800 1.7114 1.0056
0.0731 49.49 4900 1.7114 1.0056
0.0741 50.51 5000 1.7114 1.0056
0.0705 51.52 5100 1.7114 1.0056
0.0736 52.53 5200 1.7114 1.0056
0.0741 53.54 5300 1.7114 1.0056
0.0721 54.55 5400 1.7114 1.0056
0.074 55.56 5500 1.7114 1.0056
0.071 56.57 5600 1.7114 1.0056
0.0723 57.58 5700 1.7114 1.0056
0.0725 58.59 5800 1.7114 1.0056
0.0746 59.6 5900 1.7114 1.0056

Framework versions

  • Transformers 4.12.5
  • Pytorch 1.10.0+cu113
  • Datasets 1.17.0
  • Tokenizers 0.10.3