whisper-large-v3-ja / README.md
Watarungurunnn's picture
Upload tokenizer
0cd0b1b verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
base_model: openai/whisper-large-v3
model-index:
  - name: whisper-large-v3-ja
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: ja
          split: validation
          args: ja
        metrics:
          - type: wer
            value: 14.696501005043272
            name: Wer

whisper-large-v3-ja

This model is a fine-tuned version of openai/whisper-large-v3 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4210
  • Wer: 14.6965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1542 1.69 500 0.2712 15.6149
0.0351 3.39 1000 0.3074 16.1866
0.0081 5.08 1500 0.3475 15.3802
0.0049 6.78 2000 0.3427 15.1804
0.001 8.47 2500 0.3851 14.7302
0.0004 10.17 3000 0.4109 14.7254
0.0003 11.86 3500 0.4168 14.6953
0.0003 13.56 4000 0.4210 14.6965

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2