|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import torch.nn.functional as F |
|
import os |
|
import random |
|
import argparse |
|
from torchvision import transforms |
|
from torch.autograd import Variable |
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
class BaseLoader(torch.utils.data.Dataset): |
|
def __init__(self, triplets, transform=None): |
|
self.triplets = triplets |
|
self.transform = transform |
|
|
|
def __getitem__(self, index): |
|
img1_pth, img2_pth, img3_pth = self.triplets[index] |
|
img1 = cv2.imread(img1_pth) |
|
img2 = cv2.imread(img2_pth) |
|
img3 = cv2.imread(img3_pth) |
|
|
|
try: |
|
img1 = cv2.resize(img1, (args.picture_resize, args.picture_resize)) |
|
except Exception as e: |
|
img1 = np.zeros((args.picture_resize, args.picture_resize, 3), dtype=np.uint8) |
|
|
|
try: |
|
img2 = cv2.resize(img2, (args.picture_resize, args.picture_resize)) |
|
except Exception as e: |
|
img2 = np.zeros((args.picture_resize, args.picture_resize, 3), dtype=np.uint8) |
|
|
|
try: |
|
img3 = cv2.resize(img3, (args.picture_resize, args.picture_resize)) |
|
except Exception as e: |
|
img3 = np.zeros((args.picture_resize, args.picture_resize, 3), dtype=np.uint8) |
|
|
|
if self.transform is not None: |
|
img1 = self.transform(img1) |
|
img2 = self.transform(img2) |
|
img3 = self.transform(img3) |
|
|
|
return img1, img2, img3 |
|
|
|
def __len__(self): |
|
return len(self.triplets) |
|
|
|
|
|
class BaseCnn(nn.Module): |
|
def __init__(self): |
|
super(BaseCnn, self).__init__() |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(3, 64, 3), |
|
nn.MaxPool2d(2) |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(64, 128, 3), |
|
nn.MaxPool2d(2) |
|
) |
|
self.conv3 = nn.Sequential( |
|
nn.Conv2d(128, 128, 3), |
|
nn.MaxPool2d(2) |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.conv3(x) |
|
x = x.view(x.size(0), -1) |
|
x = F.normalize(x, p=2, dim=1) |
|
return x |
|
|
|
|
|
class SiameseNet(nn.Module): |
|
def __init__(self): |
|
super(SiameseNet, self).__init__() |
|
self.base = BaseCnn() |
|
|
|
def forward(self, x1, x2, x3): |
|
x1 = self.base(x1) |
|
x2 = self.base(x2) |
|
x3 = self.base(x3) |
|
|
|
return x1, x2, x3 |
|
|
|
|
|
class BaseDset(object): |
|
def __init__(self): |
|
self.__base_path = "" |
|
|
|
self.__train_set = {} |
|
self.__test_set = {} |
|
self.__train_keys = [] |
|
self.__test_keys = [] |
|
|
|
def load(self, base_path): |
|
"""加载训练和测试数据集,将类别和路径存储""" |
|
self.__base_path = base_path |
|
train_dir = os.path.join(self.__base_path, 'train') |
|
test_dir = os.path.join(self.__base_path, 'test') |
|
|
|
self.__train_set = {} |
|
self.__test_set = {} |
|
self.__train_keys = [] |
|
self.__test_keys = [] |
|
|
|
for class_id in os.listdir(train_dir): |
|
class_dir = os.path.join(train_dir, class_id) |
|
self.__train_set[class_id] = [] |
|
self.__train_keys.append(class_id) |
|
|
|
for img_name in os.listdir(class_dir): |
|
img_path = os.path.join(class_dir, img_name) |
|
self.__train_set[class_id].append(img_path) |
|
|
|
for class_id in os.listdir(test_dir): |
|
class_dir = os.path.join(test_dir, class_id) |
|
self.__test_set[class_id] = [] |
|
self.__test_keys.append(class_id) |
|
for img_name in os.listdir(class_dir): |
|
img_path = os.path.join(class_dir, img_name) |
|
self.__test_set[class_id].append(img_path) |
|
|
|
return len(self.__train_keys), len(self.__test_keys) |
|
|
|
|
|
def getTriplet(self, split='train'): |
|
|
|
if split == 'train': |
|
dataset = self.__train_set |
|
keys = self.__train_keys |
|
else: |
|
dataset = self.__test_set |
|
keys = self.__test_keys |
|
|
|
|
|
pos_idx = random.randint(0, len(keys) - 1) |
|
while True: |
|
neg_idx = random.randint(0, len(keys) - 1) |
|
if pos_idx != neg_idx: |
|
break |
|
|
|
pos_anchor_img_idx = random.randint(0, len(dataset[keys[pos_idx]]) - 1) |
|
|
|
while True: |
|
pos_img_idx = random.randint(0, len(dataset[keys[pos_idx]]) - 1) |
|
if pos_anchor_img_idx != pos_img_idx: |
|
break |
|
|
|
neg_img_idx = random.randint(0, len(dataset[keys[neg_idx]]) - 1) |
|
|
|
|
|
pos_anchor_img = dataset[keys[pos_idx]][pos_anchor_img_idx] |
|
pos_img = dataset[keys[pos_idx]][pos_img_idx] |
|
neg_img = dataset[keys[neg_idx]][neg_img_idx] |
|
|
|
return pos_anchor_img, pos_img, neg_img |
|
|
|
|
|
def train(data, model, criterion, optimizer, epoch): |
|
print("******** Training ********") |
|
total_loss = 0 |
|
model.train() |
|
for batch_idx, img_triplet in enumerate(data): |
|
|
|
anchor_img, pos_img, neg_img = img_triplet |
|
anchor_img, pos_img, neg_img = anchor_img.to(device), pos_img.to(device), neg_img.to(device) |
|
anchor_img, pos_img, neg_img = Variable(anchor_img), Variable(pos_img), Variable(neg_img) |
|
|
|
E1, E2, E3 = model(anchor_img, pos_img, neg_img) |
|
|
|
dist_E1_E2 = F.pairwise_distance(E1, E2, 2) |
|
dist_E1_E3 = F.pairwise_distance(E1, E3, 2) |
|
|
|
target = torch.FloatTensor(dist_E1_E2.size()).fill_(-1) |
|
target = target.to(device) |
|
target = Variable(target) |
|
|
|
loss = criterion(dist_E1_E2, dist_E1_E3, target) |
|
total_loss += loss |
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
log_step = args.train_log_step |
|
if (batch_idx % log_step == 0) and (batch_idx != 0): |
|
print('Train Epoch: {} [{}/{}] \t Loss: {:.4f}'.format(epoch, batch_idx, len(data), total_loss / log_step)) |
|
total_loss = 0 |
|
print("****************") |
|
|
|
|
|
def test(data, model, criterion): |
|
print("******** Testing ********") |
|
with torch.no_grad(): |
|
model.eval() |
|
accuracies = [0, 0, 0] |
|
acc_threshes = [0, 0.2, 0.5] |
|
total_loss = 0 |
|
for batch_idx, img_triplet in enumerate(data): |
|
anchor_img, pos_img, neg_img = img_triplet |
|
anchor_img, pos_img, neg_img = anchor_img.to(device), pos_img.to(device), neg_img.to(device) |
|
anchor_img, pos_img, neg_img = Variable(anchor_img), Variable(pos_img), Variable(neg_img) |
|
E1, E2, E3 = model(anchor_img, pos_img, neg_img) |
|
dist_E1_E2 = F.pairwise_distance(E1, E2, 2) |
|
dist_E1_E3 = F.pairwise_distance(E1, E3, 2) |
|
|
|
target = torch.FloatTensor(dist_E1_E2.size()).fill_(-1) |
|
target = target.to(device) |
|
target = Variable(target) |
|
|
|
loss = criterion(dist_E1_E2, dist_E1_E3, target) |
|
total_loss += loss |
|
|
|
for i in range(len(accuracies)): |
|
prediction = (dist_E1_E3 - dist_E1_E2 - args.margin * acc_threshes[i]).cpu().data |
|
prediction = prediction.view(prediction.numel()) |
|
prediction = (prediction > 0).float() |
|
batch_acc = prediction.sum() * 1.0 / prediction.numel() |
|
accuracies[i] += batch_acc |
|
print('Test Loss: {}'.format(total_loss / len(data))) |
|
for i in range(len(accuracies)): |
|
|
|
print( |
|
'Test Accuracy with diff = {}% of margin: {:.4f}'.format(acc_threshes[i] * 100, |
|
accuracies[i] / len(data))) |
|
print("****************") |
|
|
|
return accuracies[-1] |
|
|
|
|
|
def main(): |
|
|
|
torch.manual_seed(718) |
|
torch.cuda.manual_seed(718) |
|
|
|
data_path = r'./characters' |
|
|
|
dset_obj = BaseDset() |
|
dset_obj.load(data_path) |
|
|
|
train_triplets = [] |
|
test_triplets = [] |
|
|
|
for i in range(args.num_train_samples): |
|
pos_anchor_img, pos_img, neg_img = dset_obj.getTriplet() |
|
train_triplets.append([pos_anchor_img, pos_img, neg_img]) |
|
for i in range(args.num_test_samples): |
|
pos_anchor_img, pos_img, neg_img = dset_obj.getTriplet(split='test') |
|
test_triplets.append([pos_anchor_img, pos_img, neg_img]) |
|
loader = BaseLoader |
|
model = SiameseNet() |
|
model.to(device) |
|
|
|
criterion = torch.nn.MarginRankingLoss(margin=args.margin) |
|
optimizer = optim.Adam(model.parameters(), lr=args.lr) |
|
|
|
best_acc_of_50_margin = 0 |
|
best_epoch = 0 |
|
|
|
for epoch in range(1, args.epochs + 1): |
|
|
|
|
|
train_data_loader = torch.utils.data.DataLoader( |
|
loader(train_triplets, |
|
transform=transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(0, 1) |
|
])), |
|
batch_size=args.batch_size, shuffle=True) |
|
test_data_loader = torch.utils.data.DataLoader( |
|
loader(test_triplets, |
|
transform=transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(0, 1) |
|
])), |
|
batch_size=args.batch_size, shuffle=True) |
|
train(train_data_loader, model, criterion, optimizer, epoch) |
|
acc_of_50_margin = test(test_data_loader, model, criterion) |
|
|
|
model_to_save = { |
|
"epoch": epoch + 1, |
|
'state_dict': model.state_dict(), |
|
} |
|
|
|
if acc_of_50_margin > best_acc_of_50_margin: |
|
best_acc_of_50_margin = acc_of_50_margin |
|
best_epoch = epoch |
|
|
|
if not args.disable_save_best_ckp: |
|
result_path = os.path.join(args.result_dir) |
|
file_name = os.path.join(args.result_dir, "best_checkpoint" + ".pt") |
|
if not os.path.exists(result_path): |
|
os.makedirs(result_path) |
|
save_checkpoint(model_to_save, file_name) |
|
|
|
if (epoch % args.ckp_freq == 0) and not args.disable_save_ckp: |
|
result_path = os.path.join(args.result_dir) |
|
file_name = os.path.join(args.result_dir, "checkpoint_" + str(epoch) + ".pt") |
|
if not os.path.exists(result_path): |
|
os.makedirs(result_path) |
|
save_checkpoint(model_to_save, file_name) |
|
print("Training is done.") |
|
print(f"The best epoch of acc50, which is {best_acc_of_50_margin * 100}%, is {best_epoch}.") |
|
|
|
|
|
def save_checkpoint(state, file_name): |
|
torch.save(state, file_name) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser(description='PyTorch Siamese Example') |
|
parser.add_argument('--result_dir', default='output', type=str, |
|
help='Directory to store results') |
|
parser.add_argument('--epochs', type=int, default=10, metavar='N', |
|
help='number of epochs to train (default: 10)') |
|
|
|
parser.add_argument("--disable_save_ckp", default=False, action='store_true', |
|
help="disable to save checkpoint frequently") |
|
parser.add_argument('--ckp_freq', type=int, default=5, metavar='N', |
|
help='Checkpoint Frequency (default: 1)') |
|
parser.add_argument("--disable_save_best_ckp", default=False, action='store_true', |
|
help="disable to save best checkpoint") |
|
|
|
parser.add_argument('--train_log_step', type=int, default=500, metavar='M', |
|
help='Number of iterations after which to log the loss') |
|
parser.add_argument('--margin', type=float, default=1.0, metavar='M', |
|
help='margin for triplet loss (default: 1.0)') |
|
|
|
parser.add_argument('--batch_size', type=int, default=64, metavar='N', |
|
help='input batch size for training (default: 64)') |
|
parser.add_argument('--lr', type=float, default=0.0001, metavar='LR', |
|
help='learning rate (default: 0.0001)') |
|
parser.add_argument('--dataset', type=str, default='mnist', metavar='M', |
|
help='Dataset (default: mnist)') |
|
parser.add_argument('--picture_resize', type=int, default=200, metavar='M', |
|
help='size of the picture to reset (default: 200)') |
|
parser.add_argument('--num_train_samples', type=int, default=50000, metavar='M', |
|
help='number of training samples (default: 50000)') |
|
parser.add_argument('--num_test_samples', type=int, default=10000, metavar='M', |
|
help='number of test samples (default: 10000)') |
|
|
|
global args, device |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
args = parser.parse_args() |
|
|
|
main() |
|
|