Remove nested directory: BitTransformerLM/mcp_server.py
Browse files- BitTransformerLM/mcp_server.py +0 -322
BitTransformerLM/mcp_server.py
DELETED
|
@@ -1,322 +0,0 @@
|
|
| 1 |
-
import io
|
| 2 |
-
import os
|
| 3 |
-
import gzip
|
| 4 |
-
import uuid
|
| 5 |
-
import traceback
|
| 6 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 7 |
-
from flask import Flask, request, jsonify, send_file
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
-
import torch
|
| 10 |
-
|
| 11 |
-
from bit_transformer.dashboard_app import ModelManager
|
| 12 |
-
from bit_transformer.dashboard import plot_telemetry
|
| 13 |
-
from bit_transformer.hf_checkpoint import hf_login, save_checkpoint, download_checkpoint
|
| 14 |
-
from bit_transformer.optimization import configure_optimizer
|
| 15 |
-
from bit_transformer.bit_io import text_to_bits
|
| 16 |
-
|
| 17 |
-
app = Flask(__name__)
|
| 18 |
-
manager = ModelManager()
|
| 19 |
-
|
| 20 |
-
# background job management
|
| 21 |
-
executor = ThreadPoolExecutor(max_workers=4)
|
| 22 |
-
jobs: dict[str, dict] = {}
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def _submit_job(fn, *args, **kwargs) -> str:
|
| 26 |
-
"""Schedule a function for background execution and return a job id."""
|
| 27 |
-
job_id = str(uuid.uuid4())
|
| 28 |
-
jobs[job_id] = {"status": "queued", "result": None, "error": None, "logs": []}
|
| 29 |
-
|
| 30 |
-
def wrapper():
|
| 31 |
-
jobs[job_id]["status"] = "running"
|
| 32 |
-
try:
|
| 33 |
-
jobs[job_id]["result"] = fn(*args, **kwargs)
|
| 34 |
-
jobs[job_id]["status"] = "completed"
|
| 35 |
-
except Exception as err: # pragma: no cover - captured for client
|
| 36 |
-
jobs[job_id]["status"] = "error"
|
| 37 |
-
jobs[job_id]["error"] = str(err)
|
| 38 |
-
jobs[job_id]["trace"] = traceback.format_exc()
|
| 39 |
-
|
| 40 |
-
executor.submit(wrapper)
|
| 41 |
-
return job_id
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
@app.errorhandler(Exception)
|
| 45 |
-
def handle_exception(err):
|
| 46 |
-
"""Return JSON error responses with stack traces."""
|
| 47 |
-
return (
|
| 48 |
-
jsonify({"error": str(err), "trace": traceback.format_exc()}),
|
| 49 |
-
getattr(err, "code", 500),
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
@app.route("/init", methods=["POST"])
|
| 54 |
-
def init_model():
|
| 55 |
-
data = request.json or {}
|
| 56 |
-
int_fields = {
|
| 57 |
-
"d_model",
|
| 58 |
-
"nhead",
|
| 59 |
-
"num_layers",
|
| 60 |
-
"dim_feedforward",
|
| 61 |
-
"max_seq_len",
|
| 62 |
-
"chunk_size",
|
| 63 |
-
"overlap",
|
| 64 |
-
}
|
| 65 |
-
float_fields = {"act_threshold"}
|
| 66 |
-
bool_fields = {"reversible", "use_checkpoint"}
|
| 67 |
-
params = {}
|
| 68 |
-
for k, v in data.items():
|
| 69 |
-
if v is None:
|
| 70 |
-
params[k] = None
|
| 71 |
-
elif k in int_fields:
|
| 72 |
-
params[k] = int(v)
|
| 73 |
-
elif k in float_fields:
|
| 74 |
-
params[k] = float(v)
|
| 75 |
-
elif k in bool_fields:
|
| 76 |
-
params[k] = bool(v)
|
| 77 |
-
else:
|
| 78 |
-
params[k] = v
|
| 79 |
-
manager.init_model(params)
|
| 80 |
-
return jsonify({"status": "initialized", "params": params})
|
| 81 |
-
|
| 82 |
-
@app.route("/train", methods=["POST"])
|
| 83 |
-
def train_model():
|
| 84 |
-
bits = request.json["bits"]
|
| 85 |
-
|
| 86 |
-
def task():
|
| 87 |
-
tensor = torch.tensor(bits, dtype=torch.long)
|
| 88 |
-
loss, ratio = manager.train_step(tensor)
|
| 89 |
-
return {"loss": loss, "ratio": ratio}
|
| 90 |
-
|
| 91 |
-
job_id = _submit_job(task)
|
| 92 |
-
return jsonify({"job_id": job_id})
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
@app.route("/train_epochs", methods=["POST"])
|
| 96 |
-
def train_epochs_route():
|
| 97 |
-
data = request.json
|
| 98 |
-
bits = data["bits"]
|
| 99 |
-
epochs = int(data.get("epochs", 1))
|
| 100 |
-
compress_prob = float(data.get("compress_prob", 0.5))
|
| 101 |
-
direct_prob = float(data.get("direct_prob", 0.0))
|
| 102 |
-
|
| 103 |
-
def task():
|
| 104 |
-
tensor = torch.tensor(bits, dtype=torch.long)
|
| 105 |
-
metrics = manager.train_epochs(
|
| 106 |
-
tensor,
|
| 107 |
-
epochs=epochs,
|
| 108 |
-
compress_prob=compress_prob,
|
| 109 |
-
direct_prob=direct_prob,
|
| 110 |
-
)
|
| 111 |
-
return {"metrics": metrics}
|
| 112 |
-
|
| 113 |
-
job_id = _submit_job(task)
|
| 114 |
-
return jsonify({"job_id": job_id})
|
| 115 |
-
|
| 116 |
-
@app.route("/scale_up", methods=["POST"])
|
| 117 |
-
def scale_up():
|
| 118 |
-
width_mult = float(request.json.get("width_mult", 1.0))
|
| 119 |
-
|
| 120 |
-
def task():
|
| 121 |
-
manager.scale_up(width_mult)
|
| 122 |
-
return {
|
| 123 |
-
"status": "scaled",
|
| 124 |
-
"layers": manager.model.num_layers,
|
| 125 |
-
"d_model": manager.model.d_model,
|
| 126 |
-
}
|
| 127 |
-
|
| 128 |
-
job_id = _submit_job(task)
|
| 129 |
-
return jsonify({"job_id": job_id})
|
| 130 |
-
|
| 131 |
-
@app.route("/collapse", methods=["POST"])
|
| 132 |
-
def collapse_model():
|
| 133 |
-
cluster_bits = request.json["clusters"]
|
| 134 |
-
params = {k: int(v) for k, v in request.json["params"].items()}
|
| 135 |
-
width_scale = float(request.json.get("width_scale", 1.0))
|
| 136 |
-
|
| 137 |
-
def task():
|
| 138 |
-
manager.collapse(cluster_bits, params, width_scale)
|
| 139 |
-
return {"status": "collapsed"}
|
| 140 |
-
|
| 141 |
-
job_id = _submit_job(task)
|
| 142 |
-
return jsonify({"job_id": job_id})
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
@app.route("/job/<job_id>", methods=["GET"])
|
| 146 |
-
def get_job(job_id: str):
|
| 147 |
-
job = jobs.get(job_id)
|
| 148 |
-
if job is None:
|
| 149 |
-
return jsonify({"error": "not found"}), 404
|
| 150 |
-
return jsonify(job)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
@app.route("/jobs", methods=["GET"])
|
| 154 |
-
def list_jobs():
|
| 155 |
-
return jsonify(jobs)
|
| 156 |
-
|
| 157 |
-
@app.route("/lambdas", methods=["GET", "POST"])
|
| 158 |
-
def update_lambdas():
|
| 159 |
-
if request.method == "POST":
|
| 160 |
-
data = request.json
|
| 161 |
-
manager.set_lambdas(float(data["lambda_K"]), float(data["lambda_C"]), float(data["lambda_S"]))
|
| 162 |
-
return jsonify({"status": "updated"})
|
| 163 |
-
else:
|
| 164 |
-
return jsonify({
|
| 165 |
-
"lambda_K": manager.lambda_K,
|
| 166 |
-
"lambda_C": manager.lambda_C,
|
| 167 |
-
"lambda_S": manager.lambda_S,
|
| 168 |
-
})
|
| 169 |
-
|
| 170 |
-
@app.route("/diffusion", methods=["GET", "POST"])
|
| 171 |
-
def update_diffusion():
|
| 172 |
-
if request.method == "POST":
|
| 173 |
-
manager.set_diffusion(bool(request.json.get("diffusion", False)))
|
| 174 |
-
return jsonify({"status": "updated"})
|
| 175 |
-
return jsonify({"diffusion": manager.diffusion})
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
@app.route("/qat", methods=["GET", "POST"])
|
| 179 |
-
def update_qat():
|
| 180 |
-
if request.method == "POST":
|
| 181 |
-
manager.set_qat(bool(request.json.get("qat", False)))
|
| 182 |
-
return jsonify({"status": "updated"})
|
| 183 |
-
return jsonify({"qat": manager.qat})
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
@app.route("/gpu", methods=["GET", "POST"])
|
| 187 |
-
def update_gpu():
|
| 188 |
-
if request.method == "POST":
|
| 189 |
-
manager.set_gpu(bool(request.json.get("use_gpu", False)))
|
| 190 |
-
return jsonify({"status": "updated"})
|
| 191 |
-
return jsonify({"use_gpu": manager.use_gpu})
|
| 192 |
-
|
| 193 |
-
@app.route("/infer", methods=["POST"])
|
| 194 |
-
def inference():
|
| 195 |
-
bits = torch.tensor(request.json["bits"], dtype=torch.long)
|
| 196 |
-
result = manager.infer(bits)
|
| 197 |
-
return jsonify(result)
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
@app.route("/infer_long", methods=["POST"])
|
| 201 |
-
def inference_long():
|
| 202 |
-
bits = torch.tensor(request.json["bits"], dtype=torch.long)
|
| 203 |
-
ctx = int(request.json.get("ctx_bits", 4096))
|
| 204 |
-
overlap = int(request.json.get("overlap", 256))
|
| 205 |
-
result = manager.infer_long(bits, ctx_bits=ctx, overlap=overlap)
|
| 206 |
-
return jsonify(result)
|
| 207 |
-
|
| 208 |
-
@app.route("/infer_text", methods=["POST"])
|
| 209 |
-
def inference_text():
|
| 210 |
-
text = request.json.get("text", "")
|
| 211 |
-
result = manager.infer_text(text)
|
| 212 |
-
return jsonify(result)
|
| 213 |
-
|
| 214 |
-
@app.route("/status", methods=["GET"])
|
| 215 |
-
def status():
|
| 216 |
-
return jsonify(manager.get_status())
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
@app.route("/model_config", methods=["GET"])
|
| 220 |
-
def model_config():
|
| 221 |
-
return jsonify(manager.get_model_config())
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
@app.route("/metrics", methods=["GET"])
|
| 225 |
-
def metrics():
|
| 226 |
-
return jsonify(manager.get_metrics())
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
@app.route("/save_checkpoint", methods=["POST"])
|
| 230 |
-
def save_checkpoint_route():
|
| 231 |
-
repo_id = request.json.get("repo_id")
|
| 232 |
-
token = request.json.get("token") or os.getenv("HF_TOKEN")
|
| 233 |
-
if manager.model is None:
|
| 234 |
-
return jsonify({"error": "model not initialized"}), 400
|
| 235 |
-
if token:
|
| 236 |
-
hf_login(token=token)
|
| 237 |
-
save_checkpoint(manager.model, repo_id=repo_id)
|
| 238 |
-
return jsonify({"status": "saved"})
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
@app.route("/download_checkpoint", methods=["POST"])
|
| 242 |
-
def download_checkpoint_route():
|
| 243 |
-
repo_id = request.json.get("repo_id")
|
| 244 |
-
token = request.json.get("token") or os.getenv("HF_TOKEN")
|
| 245 |
-
if token:
|
| 246 |
-
hf_login(token=token)
|
| 247 |
-
dest = manager.weights_path + ".gz"
|
| 248 |
-
ok = download_checkpoint(dest, repo_id=repo_id)
|
| 249 |
-
if not ok:
|
| 250 |
-
return jsonify({"status": "failed"}), 500
|
| 251 |
-
if manager.model is None:
|
| 252 |
-
return jsonify({"status": "downloaded", "loaded": False})
|
| 253 |
-
with gzip.open(dest, "rb") as f:
|
| 254 |
-
state = torch.load(f, map_location="cpu")
|
| 255 |
-
manager.model.load_state_dict(state)
|
| 256 |
-
manager.optimizer, manager.scheduler = configure_optimizer(
|
| 257 |
-
manager.model, lr=1e-3, total_steps=manager.total_steps
|
| 258 |
-
)
|
| 259 |
-
manager._apply_device()
|
| 260 |
-
manager._save_state()
|
| 261 |
-
return jsonify({"status": "downloaded", "loaded": True})
|
| 262 |
-
|
| 263 |
-
@app.route("/plot.png")
|
| 264 |
-
def plot_png():
|
| 265 |
-
fig, _ = plot_telemetry(manager.metrics)
|
| 266 |
-
buf = io.BytesIO()
|
| 267 |
-
fig.savefig(buf, format="png")
|
| 268 |
-
plt.close(fig)
|
| 269 |
-
buf.seek(0)
|
| 270 |
-
return send_file(buf, mimetype="image/png")
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
@app.route("/text_to_bits", methods=["POST"])
|
| 274 |
-
def text_to_bits_route():
|
| 275 |
-
text = request.json.get("text", "")
|
| 276 |
-
if len(text) > 100_000:
|
| 277 |
-
return jsonify({"error": "text too large"}), 413
|
| 278 |
-
return jsonify({"bits": text_to_bits(text)})
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
@app.route("/dataset", methods=["GET"])
|
| 282 |
-
def dataset_route():
|
| 283 |
-
name = request.args.get("name", "")
|
| 284 |
-
split = request.args.get("split", "train")
|
| 285 |
-
size = int(request.args.get("size", 1))
|
| 286 |
-
seq_len = int(request.args.get("seq_len", 64))
|
| 287 |
-
if size * seq_len > 1_000_000:
|
| 288 |
-
return jsonify({"error": "dataset too large"}), 413
|
| 289 |
-
if name == "wikitext2":
|
| 290 |
-
try:
|
| 291 |
-
from datasets import load_dataset
|
| 292 |
-
|
| 293 |
-
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split=split)
|
| 294 |
-
lines = [t for t in ds["text"] if t.strip()][:size]
|
| 295 |
-
except Exception:
|
| 296 |
-
bits = torch.randint(0, 2, (size, seq_len), dtype=torch.long)
|
| 297 |
-
return jsonify({"bits": bits.tolist()})
|
| 298 |
-
bits_list = []
|
| 299 |
-
for text in lines:
|
| 300 |
-
b = text_to_bits(text)[:seq_len]
|
| 301 |
-
if len(b) < seq_len:
|
| 302 |
-
b.extend([0] * (seq_len - len(b)))
|
| 303 |
-
bits_list.append(b)
|
| 304 |
-
if len(bits_list) < size:
|
| 305 |
-
pad = size - len(bits_list)
|
| 306 |
-
bits_list.extend(torch.randint(0, 2, (pad, seq_len), dtype=torch.long).tolist())
|
| 307 |
-
return jsonify({"bits": bits_list})
|
| 308 |
-
return jsonify({"error": "unknown dataset"}), 400
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
@app.route("/health")
|
| 312 |
-
def health_check():
|
| 313 |
-
return jsonify({"status": "ok"})
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
def run_mcp_server(host: str = "0.0.0.0", port: int = 7000) -> None:
|
| 317 |
-
app.run(host=host, port=port, debug=True)
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
if __name__ == "__main__":
|
| 321 |
-
import torch
|
| 322 |
-
run_mcp_server()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|