Remove nested directory: BitTransformerLM/tests/test_model.py
Browse files
BitTransformerLM/tests/test_model.py
DELETED
|
@@ -1,304 +0,0 @@
|
|
| 1 |
-
import os, sys; sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
| 2 |
-
from bit_transformer import (
|
| 3 |
-
BitTransformerLM,
|
| 4 |
-
hil_safe_inference,
|
| 5 |
-
text_to_bits,
|
| 6 |
-
bits_to_text,
|
| 7 |
-
plot_telemetry,
|
| 8 |
-
infer_long_sequence,
|
| 9 |
-
diffusion_inference,
|
| 10 |
-
compress_bits,
|
| 11 |
-
)
|
| 12 |
-
from bit_transformer.safety import SafetyGate
|
| 13 |
-
import torch
|
| 14 |
-
import torch.nn.functional as F
|
| 15 |
-
import torch.nn as nn
|
| 16 |
-
import pytest
|
| 17 |
-
|
| 18 |
-
def test_forward_pass():
|
| 19 |
-
B, L = 2, 8
|
| 20 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=L)
|
| 21 |
-
bits = torch.randint(0, 2, (B, L), dtype=torch.long)
|
| 22 |
-
logits, telemetry = model(bits)
|
| 23 |
-
assert logits.shape == (B, L, 2)
|
| 24 |
-
required_keys = {
|
| 25 |
-
"negentropy_input",
|
| 26 |
-
"lz_complexity_input",
|
| 27 |
-
"negentropy_logits",
|
| 28 |
-
"lz_complexity_logits",
|
| 29 |
-
"symbiosis_kl",
|
| 30 |
-
"symbiosis_score",
|
| 31 |
-
"attention_entropy",
|
| 32 |
-
"attention_entropy_mean",
|
| 33 |
-
}
|
| 34 |
-
assert required_keys.issubset(telemetry.keys())
|
| 35 |
-
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 36 |
-
target = bits[:, 1:].reshape(-1)
|
| 37 |
-
loss = F.cross_entropy(pred, target)
|
| 38 |
-
assert torch.isfinite(loss)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def test_autocast_forward():
|
| 42 |
-
model = BitTransformerLM(
|
| 43 |
-
d_model=32,
|
| 44 |
-
nhead=4,
|
| 45 |
-
num_layers=1,
|
| 46 |
-
dim_feedforward=64,
|
| 47 |
-
max_seq_len=8,
|
| 48 |
-
use_autocast=True,
|
| 49 |
-
)
|
| 50 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 51 |
-
logits, _ = model(bits)
|
| 52 |
-
assert logits.shape == (1, 8, 2)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def test_act_forward():
|
| 56 |
-
model = BitTransformerLM(
|
| 57 |
-
d_model=32,
|
| 58 |
-
nhead=4,
|
| 59 |
-
num_layers=2,
|
| 60 |
-
dim_feedforward=64,
|
| 61 |
-
max_seq_len=8,
|
| 62 |
-
use_act=True,
|
| 63 |
-
)
|
| 64 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 65 |
-
logits, tele = model(bits)
|
| 66 |
-
assert logits.shape == (1, 8, 2)
|
| 67 |
-
assert "halt_probs" in tele
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def test_act_skips_layers():
|
| 71 |
-
model = BitTransformerLM(
|
| 72 |
-
d_model=16,
|
| 73 |
-
nhead=4,
|
| 74 |
-
num_layers=3,
|
| 75 |
-
dim_feedforward=32,
|
| 76 |
-
max_seq_len=8,
|
| 77 |
-
use_act=True,
|
| 78 |
-
act_threshold=0.5,
|
| 79 |
-
)
|
| 80 |
-
for proj in model.halt_projs:
|
| 81 |
-
nn.init.constant_(proj.weight, 0.0)
|
| 82 |
-
nn.init.constant_(proj.bias, 10.0)
|
| 83 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 84 |
-
_, tele = model(bits)
|
| 85 |
-
assert len(tele["halt_probs"]) < model.num_layers
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
def test_hil_safety_gate():
|
| 89 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 90 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 91 |
-
# Expect gate triggered with high floors
|
| 92 |
-
raised = False
|
| 93 |
-
try:
|
| 94 |
-
hil_safe_inference(model, bits, c_floor=1.0, s_floor=1.0)
|
| 95 |
-
except RuntimeError:
|
| 96 |
-
raised = True
|
| 97 |
-
assert raised
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
def test_hil_safety_non_strict():
|
| 101 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 102 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 103 |
-
out, _ = hil_safe_inference(model, bits, c_floor=1.0, s_floor=1.0, strict=False)
|
| 104 |
-
assert out.shape == bits.shape
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def test_safety_gate_burn_in():
|
| 108 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 109 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 110 |
-
gate = SafetyGate(c_floor=1.0, s_floor=1.0, burn_in=1)
|
| 111 |
-
hil_safe_inference(model, bits, gate=gate)
|
| 112 |
-
with pytest.raises(RuntimeError):
|
| 113 |
-
hil_safe_inference(model, bits, gate=gate)
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
def test_bit_io_roundtrip():
|
| 117 |
-
text = "hello"
|
| 118 |
-
bits = text_to_bits(text)
|
| 119 |
-
assert bits_to_text(bits) == text
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
def test_plot_telemetry():
|
| 123 |
-
log = {
|
| 124 |
-
"negentropy": [0.6, 0.7, 0.4],
|
| 125 |
-
"lz_complexity": [0.5, 0.45, 0.6],
|
| 126 |
-
"symbiosis_score": [0.55, 0.6, 0.3],
|
| 127 |
-
"clusters": [0, 0, 1],
|
| 128 |
-
}
|
| 129 |
-
fig, axes = plot_telemetry(log)
|
| 130 |
-
assert len(axes) == 3
|
| 131 |
-
fig.clf()
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
def test_metric_no_gradient_flow():
|
| 135 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 136 |
-
bits = torch.randint(0, 2, (2, 8), dtype=torch.long)
|
| 137 |
-
logits, _ = model(bits)
|
| 138 |
-
loss = model.negentropy_logits(logits).mean() + model.lz_complexity_logits(logits).mean()
|
| 139 |
-
assert not loss.requires_grad
|
| 140 |
-
with pytest.raises(RuntimeError):
|
| 141 |
-
loss.backward()
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def test_negentropy_decompression_edge_case():
|
| 145 |
-
bits = torch.tensor([0, 1] * 8, dtype=torch.uint8)
|
| 146 |
-
comp = compress_bits(bits)
|
| 147 |
-
model = BitTransformerLM(d_model=16, nhead=2, num_layers=1, dim_feedforward=32, max_seq_len=bits.numel())
|
| 148 |
-
neg_comp = model.negentropy_kpi(comp.unsqueeze(0))
|
| 149 |
-
neg_raw = model.negentropy_kpi(bits.unsqueeze(0))
|
| 150 |
-
assert torch.allclose(neg_comp, neg_raw, atol=1e-6)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
def test_dynamic_quantization():
|
| 154 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 155 |
-
from bit_transformer import quantize_dynamic
|
| 156 |
-
|
| 157 |
-
qmodel = quantize_dynamic(model)
|
| 158 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 159 |
-
logits, _ = qmodel(bits)
|
| 160 |
-
assert logits.shape == (1, 8, 2)
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
def test_qat_fx_roundtrip():
|
| 164 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 165 |
-
from bit_transformer import prepare_qat_fx, convert_qat_fx
|
| 166 |
-
|
| 167 |
-
example_bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 168 |
-
qat_model = prepare_qat_fx(model)
|
| 169 |
-
qat_model.eval()
|
| 170 |
-
qmodel = convert_qat_fx(qat_model)
|
| 171 |
-
|
| 172 |
-
logits, _ = qmodel(example_bits)
|
| 173 |
-
assert logits.shape == (1, 8, 2)
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
def test_fsdp_wrap():
|
| 177 |
-
import os
|
| 178 |
-
import torch
|
| 179 |
-
import torch.distributed as dist
|
| 180 |
-
from bit_transformer import BitTransformerLM, wrap_fsdp
|
| 181 |
-
|
| 182 |
-
if not dist.is_initialized():
|
| 183 |
-
os.environ.setdefault("MASTER_ADDR", "localhost")
|
| 184 |
-
os.environ.setdefault("MASTER_PORT", "29500")
|
| 185 |
-
dist.init_process_group("gloo", rank=0, world_size=1)
|
| 186 |
-
if not torch.cuda.is_available():
|
| 187 |
-
pytest.skip("CUDA not available")
|
| 188 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 189 |
-
fsdp_model = wrap_fsdp(model)
|
| 190 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 191 |
-
logits, _ = fsdp_model(bits)
|
| 192 |
-
assert logits.shape == (1, 8, 2)
|
| 193 |
-
dist.destroy_process_group()
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
def test_make_pipeline():
|
| 197 |
-
import pytest
|
| 198 |
-
import torch.distributed.rpc as rpc
|
| 199 |
-
from bit_transformer import BitTransformerLM, make_pipeline
|
| 200 |
-
|
| 201 |
-
if not rpc._is_current_rpc_agent_set():
|
| 202 |
-
pytest.skip("RPC not initialized")
|
| 203 |
-
|
| 204 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 205 |
-
pipe_model = make_pipeline(model, chunks=1)
|
| 206 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 207 |
-
logits, _ = pipe_model(bits)
|
| 208 |
-
assert logits.shape == (1, 8, 2)
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
def test_causal_attention():
|
| 212 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 213 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 214 |
-
logits, tele = model(bits, causal=True)
|
| 215 |
-
assert logits.shape == (1, 8, 2)
|
| 216 |
-
attn = tele["attention_maps"][0]
|
| 217 |
-
upper = attn.triu(1)
|
| 218 |
-
assert torch.allclose(upper, torch.zeros_like(upper))
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
def test_scaling_helpers():
|
| 222 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 223 |
-
model = model.double_width()
|
| 224 |
-
assert model.d_model == 64
|
| 225 |
-
model = model.double_layers()
|
| 226 |
-
assert model.num_layers == 2
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
def test_expand_positional_encoding():
|
| 230 |
-
model = BitTransformerLM(d_model=16, nhead=4, num_layers=1, dim_feedforward=32, max_seq_len=8)
|
| 231 |
-
model.expand_positional_encoding(16)
|
| 232 |
-
assert model.pos_enc.pe.size(0) == 16
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
def test_infer_long_sequence():
|
| 236 |
-
model = BitTransformerLM(d_model=16, nhead=4, num_layers=1, dim_feedforward=32, max_seq_len=8)
|
| 237 |
-
bits = torch.randint(0, 2, (12,), dtype=torch.long)
|
| 238 |
-
preds, logs = infer_long_sequence(model, bits, ctx_bits=8, overlap=4)
|
| 239 |
-
assert len(preds) == 12
|
| 240 |
-
assert len(logs) >= 2
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
def test_chunking_disabled_when_non_causal():
|
| 244 |
-
model = BitTransformerLM(
|
| 245 |
-
d_model=32,
|
| 246 |
-
nhead=4,
|
| 247 |
-
num_layers=1,
|
| 248 |
-
dim_feedforward=64,
|
| 249 |
-
max_seq_len=8,
|
| 250 |
-
chunk_size=2,
|
| 251 |
-
full_attn_logging=True,
|
| 252 |
-
)
|
| 253 |
-
# Zero query/key/value projections so attention is uniformly distributed.
|
| 254 |
-
# This makes the test deterministic: any non-masked position receives equal
|
| 255 |
-
# weight, allowing us to rely solely on the chunking mask for the check.
|
| 256 |
-
nn.init.constant_(model.layers[0].self_attn.in_proj_weight, 0.0)
|
| 257 |
-
nn.init.constant_(model.layers[0].self_attn.in_proj_bias, 0.0)
|
| 258 |
-
# Disable dropout for deterministic attention weights.
|
| 259 |
-
model.eval()
|
| 260 |
-
for module in model.modules():
|
| 261 |
-
if isinstance(module, nn.Dropout):
|
| 262 |
-
module.p = 0.0
|
| 263 |
-
model.layers[0].self_attn.dropout = 0.0
|
| 264 |
-
|
| 265 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 266 |
-
_, tele_causal = model(bits, causal=True)
|
| 267 |
-
_, tele_noncausal = model(bits, causal=False)
|
| 268 |
-
attn_causal = tele_causal["attention_maps"][0]
|
| 269 |
-
attn_noncausal = tele_noncausal["attention_maps"][0]
|
| 270 |
-
# Causal mode keeps attention within chunk boundaries, while non-causal mode
|
| 271 |
-
# should permit cross-chunk attention.
|
| 272 |
-
assert attn_causal[0, 0, 0, 4] == 0
|
| 273 |
-
assert attn_noncausal[0, 0, 0, 4] > 0
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
def test_diffusion_inference_generates_bits():
|
| 277 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 278 |
-
out = diffusion_inference(model, length=8, steps=2, batch_size=2)
|
| 279 |
-
assert out.shape == (2, 8)
|
| 280 |
-
assert set(out.unique().tolist()).issubset({0, 1})
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
def test_diffusion_inference_cosine_schedule():
|
| 284 |
-
model = BitTransformerLM(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=8)
|
| 285 |
-
out = diffusion_inference(model, length=8, steps=2, schedule="cosine")
|
| 286 |
-
assert out.shape == (1, 8)
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
def test_chunking_restored_after_diffusion():
|
| 290 |
-
model = BitTransformerLM(
|
| 291 |
-
d_model=32,
|
| 292 |
-
nhead=4,
|
| 293 |
-
num_layers=1,
|
| 294 |
-
dim_feedforward=64,
|
| 295 |
-
max_seq_len=8,
|
| 296 |
-
chunk_size=2,
|
| 297 |
-
full_attn_logging=True,
|
| 298 |
-
)
|
| 299 |
-
bits = torch.randint(0, 2, (1, 8), dtype=torch.long)
|
| 300 |
-
_ = model(bits, causal=False)
|
| 301 |
-
assert model.layers[0].chunk_size == 2
|
| 302 |
-
_, tele = model(bits, causal=True)
|
| 303 |
-
attn = tele["attention_maps"][0]
|
| 304 |
-
assert attn[0, 0, 0, 4] == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|