π Refined BitTransformerLM: Organized codebase with best practices
Browse files
scripts/examples/better_sampling.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Better Sampling for BitTransformerLM
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import sys
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
sys.path.append('/data')
|
| 11 |
+
sys.path.append('/data/BitTransformerLM')
|
| 12 |
+
|
| 13 |
+
from bit_transformer import BitTransformerLM, text_to_bits, bits_to_text
|
| 14 |
+
|
| 15 |
+
def load_model():
|
| 16 |
+
model = BitTransformerLM(
|
| 17 |
+
d_model=512, nhead=16, num_layers=8, dim_feedforward=1024,
|
| 18 |
+
max_seq_len=512, reversible=True, use_checkpoint=False,
|
| 19 |
+
use_autocast=False, use_act=True, act_threshold=0.9,
|
| 20 |
+
lambda_K=0.05, lambda_C=0.05, lambda_S=0.05
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
checkpoint = torch.load('/data/BitTransformerLM/checkpoints/checkpoint_best.pt', map_location='cpu')
|
| 24 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 25 |
+
model.eval()
|
| 26 |
+
|
| 27 |
+
return model
|
| 28 |
+
|
| 29 |
+
def smart_generate(model, prompt, max_chars=5):
|
| 30 |
+
"""Generate with better sampling strategies."""
|
| 31 |
+
print(f"\nπ― Smart generating from: '{prompt}'")
|
| 32 |
+
|
| 33 |
+
input_bits = text_to_bits(prompt)
|
| 34 |
+
generated_bits = input_bits.copy()
|
| 35 |
+
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
for char_idx in range(max_chars):
|
| 38 |
+
# Generate 9 bits for one character (8 data + 1 parity)
|
| 39 |
+
char_bits = []
|
| 40 |
+
|
| 41 |
+
for bit_idx in range(9):
|
| 42 |
+
# Context (keep reasonable length)
|
| 43 |
+
context = generated_bits + char_bits
|
| 44 |
+
context = context[-300:] if len(context) > 300 else context
|
| 45 |
+
context_tensor = torch.tensor(context, dtype=torch.long).unsqueeze(0)
|
| 46 |
+
|
| 47 |
+
logits, telemetry = model(context_tensor)
|
| 48 |
+
next_bit_logits = logits[0, -1, :]
|
| 49 |
+
|
| 50 |
+
# Different strategies based on bit position
|
| 51 |
+
if bit_idx < 8: # Data bits
|
| 52 |
+
# Use higher temperature for more variety
|
| 53 |
+
temperature = 0.8
|
| 54 |
+
next_bit_logits = next_bit_logits / temperature
|
| 55 |
+
|
| 56 |
+
# Top-k sampling
|
| 57 |
+
k = 2 # Only 2 options anyway (0 or 1)
|
| 58 |
+
top_k_logits, top_k_indices = torch.topk(next_bit_logits, k)
|
| 59 |
+
probs = F.softmax(top_k_logits, dim=-1)
|
| 60 |
+
selected_idx = torch.multinomial(probs, 1).item()
|
| 61 |
+
next_bit = top_k_indices[selected_idx].item()
|
| 62 |
+
else: # Parity bit
|
| 63 |
+
# Calculate correct parity
|
| 64 |
+
data_bits = char_bits[:8]
|
| 65 |
+
expected_parity = sum(data_bits) % 2
|
| 66 |
+
next_bit = expected_parity
|
| 67 |
+
|
| 68 |
+
char_bits.append(next_bit)
|
| 69 |
+
|
| 70 |
+
# Add completed character
|
| 71 |
+
generated_bits.extend(char_bits)
|
| 72 |
+
|
| 73 |
+
# Try to decode the new character
|
| 74 |
+
try:
|
| 75 |
+
new_char_bits = char_bits
|
| 76 |
+
# Convert to bytes (remove parity)
|
| 77 |
+
data_bits = new_char_bits[:8]
|
| 78 |
+
byte_val = sum(bit * (2**(7-i)) for i, bit in enumerate(data_bits))
|
| 79 |
+
|
| 80 |
+
if 32 <= byte_val <= 126: # Printable ASCII
|
| 81 |
+
char = chr(byte_val)
|
| 82 |
+
print(f" Char {char_idx+1}: '{char}' (byte={byte_val})")
|
| 83 |
+
|
| 84 |
+
# Early stopping for sentence enders
|
| 85 |
+
if char in '.!?\n':
|
| 86 |
+
break
|
| 87 |
+
else:
|
| 88 |
+
print(f" Char {char_idx+1}: Non-printable (byte={byte_val})")
|
| 89 |
+
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f" Char {char_idx+1}: Decode error: {e}")
|
| 92 |
+
|
| 93 |
+
# Final decode attempt
|
| 94 |
+
generated_only = generated_bits[len(input_bits):]
|
| 95 |
+
try:
|
| 96 |
+
final_text = bits_to_text(generated_only)
|
| 97 |
+
print(f"β¨ Result: '{prompt}' + '{final_text}'")
|
| 98 |
+
return final_text
|
| 99 |
+
except Exception as e:
|
| 100 |
+
print(f"β Final decode failed: {e}")
|
| 101 |
+
|
| 102 |
+
# Manual decode of complete characters
|
| 103 |
+
manual_result = ""
|
| 104 |
+
for i in range(0, len(generated_only), 9):
|
| 105 |
+
if i + 8 < len(generated_only):
|
| 106 |
+
char_bits = generated_only[i:i+8] # Just data bits
|
| 107 |
+
byte_val = sum(bit * (2**(7-j)) for j, bit in enumerate(char_bits))
|
| 108 |
+
if 32 <= byte_val <= 126:
|
| 109 |
+
manual_result += chr(byte_val)
|
| 110 |
+
else:
|
| 111 |
+
manual_result += '?'
|
| 112 |
+
|
| 113 |
+
print(f"π§ Manual decode: '{prompt}' + '{manual_result}'")
|
| 114 |
+
return manual_result
|
| 115 |
+
|
| 116 |
+
def main():
|
| 117 |
+
print("π SMART BITRANSFORMERLM GENERATION")
|
| 118 |
+
print("=" * 40)
|
| 119 |
+
|
| 120 |
+
model = load_model()
|
| 121 |
+
print("β
Model loaded!")
|
| 122 |
+
|
| 123 |
+
# Test different prompt styles
|
| 124 |
+
prompts = [
|
| 125 |
+
"Hello",
|
| 126 |
+
"Hi",
|
| 127 |
+
"A",
|
| 128 |
+
"The cat",
|
| 129 |
+
"I am",
|
| 130 |
+
"Yes",
|
| 131 |
+
"No"
|
| 132 |
+
]
|
| 133 |
+
|
| 134 |
+
for prompt in prompts:
|
| 135 |
+
result = smart_generate(model, prompt, max_chars=4)
|
| 136 |
+
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
main()
|