🚀 Refined BitTransformerLM: Organized codebase with best practices
Browse files
scripts/benchmarks/wikitext_benchmark.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from bit_transformer import text_to_bits, collapse_submodel
|
| 5 |
+
from progressive_scaleup import progressive_scale_up_text
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def lines_to_bits(lines, max_len=64):
|
| 9 |
+
data = []
|
| 10 |
+
for text in lines:
|
| 11 |
+
bits = text_to_bits(text)[:max_len]
|
| 12 |
+
if len(bits) < max_len:
|
| 13 |
+
bits.extend([0] * (max_len - len(bits)))
|
| 14 |
+
data.append(bits)
|
| 15 |
+
return data
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def main():
|
| 19 |
+
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train[:1%]")
|
| 20 |
+
val_ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="validation[:1%]")
|
| 21 |
+
train_lines = [item["text"] for item in ds][:256]
|
| 22 |
+
valid_lines = [item["text"] for item in val_ds][:64]
|
| 23 |
+
|
| 24 |
+
train_bits = lines_to_bits(train_lines)
|
| 25 |
+
valid_bits = lines_to_bits(valid_lines)
|
| 26 |
+
|
| 27 |
+
progressive_scale_up_text(
|
| 28 |
+
eps=0.65,
|
| 29 |
+
steps=4,
|
| 30 |
+
width_mult=2.0,
|
| 31 |
+
max_len=64,
|
| 32 |
+
dataset_size=min(64, len(train_bits)),
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
target_params = dict(d_model=16, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=64)
|
| 36 |
+
model, _ = collapse_submodel(train_bits[:64], target_params, max_rounds=1)
|
| 37 |
+
|
| 38 |
+
val_tensor = torch.tensor(valid_bits, dtype=torch.long)
|
| 39 |
+
logits, _ = model(val_tensor)
|
| 40 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 41 |
+
target = val_tensor[:, 1:].reshape(-1)
|
| 42 |
+
loss = F.cross_entropy(pred, target)
|
| 43 |
+
print("Collapsed model validation loss:", loss.item())
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
if __name__ == "__main__":
|
| 47 |
+
main()
|