π OS Launch: Clean documentation and refined licensing
Browse filesThis OS launch commit includes:
β
**Cleaned Documentation**
- Removed inflated claims and marketing language
- Added honest research status and limitations
- Created professional model card and validation reports
- Streamlined licensing to AGPLv3 + commercial contact
β
**Refined Codebase**
- Complete experimental bit-native transformer implementation
- 57 Python files with comprehensive research framework
- Safety telemetry and monitoring systems
- Distributed training and development tools
β
**Professional Standards**
- Empirical validation of all claims
- Clear experimental vs production distinctions
- Rigorous research methodology requirements
- Community contribution framework
Ready for serious research evaluation and academic investigation.
- gradio_dashboard.py +778 -0
gradio_dashboard.py
ADDED
|
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
BitTransformerLM Gradio Dashboard
|
| 4 |
+
=================================
|
| 5 |
+
|
| 6 |
+
Comprehensive Gradio interface for BitTransformerLM with full feature parity to the Flask dashboard.
|
| 7 |
+
Supports both local deployment and HuggingFace Spaces integration while maintaining MCP server compatibility.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import io
|
| 11 |
+
import json
|
| 12 |
+
import os
|
| 13 |
+
import sys
|
| 14 |
+
import traceback
|
| 15 |
+
import warnings
|
| 16 |
+
from typing import Any, Dict, List, Optional, Union, Tuple
|
| 17 |
+
import matplotlib.pyplot as plt
|
| 18 |
+
import matplotlib
|
| 19 |
+
matplotlib.use('Agg') # Use non-interactive backend
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
import gradio as gr
|
| 23 |
+
import numpy as np
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
import threading
|
| 26 |
+
import time
|
| 27 |
+
import requests
|
| 28 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 29 |
+
import uuid
|
| 30 |
+
|
| 31 |
+
# Add BitTransformerLM to path
|
| 32 |
+
sys.path.insert(0, str(Path(__file__).parent))
|
| 33 |
+
|
| 34 |
+
# BitTransformerLM imports
|
| 35 |
+
from bit_transformer.model import BitTransformerLM, infer_long_sequence
|
| 36 |
+
from bit_transformer.optimization import configure_optimizer
|
| 37 |
+
from bit_transformer.collapse import collapse_submodel
|
| 38 |
+
from bit_transformer.dashboard import plot_telemetry
|
| 39 |
+
from bit_transformer.scale import expand_model
|
| 40 |
+
from bit_transformer.bit_io import text_to_bits, bits_to_text
|
| 41 |
+
from bit_transformer.safety import hil_safe_inference
|
| 42 |
+
from bit_transformer.compression import model_output_decompress, compress_bits
|
| 43 |
+
from bit_transformer.distributed import wrap_fsdp
|
| 44 |
+
from bit_transformer.training import train_loop
|
| 45 |
+
from bit_transformer.telemetry import detect_metric_drift
|
| 46 |
+
from bit_transformer.quantization import prepare_qat_fx, convert_qat_fx
|
| 47 |
+
from bit_transformer.hf_checkpoint import hf_login, save_checkpoint, download_checkpoint
|
| 48 |
+
from bit_transformer.dataset_builder import BitTransformerDatasetBuilder, create_bittransformerlm_dataset
|
| 49 |
+
|
| 50 |
+
# Global state management
|
| 51 |
+
class GradioModelManager:
|
| 52 |
+
"""Enhanced ModelManager for Gradio interface with thread safety."""
|
| 53 |
+
|
| 54 |
+
def __init__(self):
|
| 55 |
+
self.model = None
|
| 56 |
+
self.config = {}
|
| 57 |
+
self.telemetry_log = {
|
| 58 |
+
"negentropy": [],
|
| 59 |
+
"lz_complexity": [],
|
| 60 |
+
"symbiosis_score": [],
|
| 61 |
+
"steps": []
|
| 62 |
+
}
|
| 63 |
+
self.c_floor = 0.3
|
| 64 |
+
self.s_floor = 0.5
|
| 65 |
+
self.lambda_weights = {"K": 1.0, "C": 1.0, "S": 1.0}
|
| 66 |
+
self.compression_enabled = False
|
| 67 |
+
self.qat_enabled = False
|
| 68 |
+
self.diffusion_enabled = False
|
| 69 |
+
self.gpu_enabled = False
|
| 70 |
+
|
| 71 |
+
# Background job management
|
| 72 |
+
self.executor = ThreadPoolExecutor(max_workers=4)
|
| 73 |
+
self.jobs = {}
|
| 74 |
+
self.mcp_server_addr = os.getenv("MCP_SERVER_ADDR")
|
| 75 |
+
|
| 76 |
+
# Thread safety
|
| 77 |
+
self.lock = threading.Lock()
|
| 78 |
+
|
| 79 |
+
def init_model(self, model_config: dict):
|
| 80 |
+
"""Initialize BitTransformerLM model with given configuration."""
|
| 81 |
+
with self.lock:
|
| 82 |
+
try:
|
| 83 |
+
# Clean config - remove None values
|
| 84 |
+
clean_config = {k: v for k, v in model_config.items() if v is not None and v != ""}
|
| 85 |
+
|
| 86 |
+
self.model = BitTransformerLM(**clean_config)
|
| 87 |
+
self.config = clean_config
|
| 88 |
+
|
| 89 |
+
# Apply transformations
|
| 90 |
+
if self.qat_enabled:
|
| 91 |
+
self.model = prepare_qat_fx(self.model)
|
| 92 |
+
if self.gpu_enabled and torch.cuda.is_available():
|
| 93 |
+
self.model = self.model.cuda()
|
| 94 |
+
|
| 95 |
+
return f"β
Model initialized with config: {clean_config}"
|
| 96 |
+
except Exception as e:
|
| 97 |
+
return f"β Model initialization failed: {str(e)}"
|
| 98 |
+
|
| 99 |
+
def train_step(self, bits_input, epochs=1):
|
| 100 |
+
"""Execute training step(s) with given bit input."""
|
| 101 |
+
if self.model is None:
|
| 102 |
+
return "β Model not initialized", None, None
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
# Parse bits input
|
| 106 |
+
if isinstance(bits_input, str):
|
| 107 |
+
if bits_input.strip().startswith('['):
|
| 108 |
+
# JSON format
|
| 109 |
+
bits = json.loads(bits_input)
|
| 110 |
+
else:
|
| 111 |
+
# Space-separated format
|
| 112 |
+
bits = [int(x) for x in bits_input.strip().split()]
|
| 113 |
+
else:
|
| 114 |
+
bits = bits_input
|
| 115 |
+
|
| 116 |
+
tensor = torch.tensor(bits, dtype=torch.long)
|
| 117 |
+
if self.gpu_enabled and torch.cuda.is_available():
|
| 118 |
+
tensor = tensor.cuda()
|
| 119 |
+
|
| 120 |
+
# Training loop
|
| 121 |
+
total_loss = 0
|
| 122 |
+
compression_ratio = 1.0
|
| 123 |
+
|
| 124 |
+
for epoch in range(epochs):
|
| 125 |
+
self.model.train()
|
| 126 |
+
|
| 127 |
+
# Forward pass with telemetry
|
| 128 |
+
if self.compression_enabled:
|
| 129 |
+
compressed_bits, ratio = compress_bits(bits)
|
| 130 |
+
tensor = torch.tensor(compressed_bits, dtype=torch.long)
|
| 131 |
+
compression_ratio = ratio
|
| 132 |
+
|
| 133 |
+
output, telemetry = self.model(tensor.unsqueeze(0))
|
| 134 |
+
|
| 135 |
+
# Compute loss
|
| 136 |
+
if output.dim() == 3:
|
| 137 |
+
loss = F.cross_entropy(
|
| 138 |
+
output.view(-1, output.size(-1)),
|
| 139 |
+
tensor[:-1].unsqueeze(0).contiguous().view(-1),
|
| 140 |
+
ignore_index=-1
|
| 141 |
+
)
|
| 142 |
+
else:
|
| 143 |
+
loss = F.cross_entropy(output, tensor.unsqueeze(0))
|
| 144 |
+
|
| 145 |
+
# Backward pass
|
| 146 |
+
loss.backward()
|
| 147 |
+
|
| 148 |
+
# Update telemetry
|
| 149 |
+
self._update_telemetry(telemetry)
|
| 150 |
+
total_loss += loss.item()
|
| 151 |
+
|
| 152 |
+
avg_loss = total_loss / epochs
|
| 153 |
+
return f"β
Training completed. Average Loss: {avg_loss:.4f}", avg_loss, compression_ratio
|
| 154 |
+
|
| 155 |
+
except Exception as e:
|
| 156 |
+
return f"β Training failed: {str(e)}", None, None
|
| 157 |
+
|
| 158 |
+
def inference(self, bits_input, long_inference=False, ctx_bits=4096, overlap=256):
|
| 159 |
+
"""Run inference on bit input."""
|
| 160 |
+
if self.model is None:
|
| 161 |
+
return "β Model not initialized", None
|
| 162 |
+
|
| 163 |
+
try:
|
| 164 |
+
# Parse bits input
|
| 165 |
+
if isinstance(bits_input, str):
|
| 166 |
+
if bits_input.strip().startswith('['):
|
| 167 |
+
bits = json.loads(bits_input)
|
| 168 |
+
else:
|
| 169 |
+
bits = [int(x) for x in bits_input.strip().split()]
|
| 170 |
+
else:
|
| 171 |
+
bits = bits_input
|
| 172 |
+
|
| 173 |
+
tensor = torch.tensor(bits, dtype=torch.long)
|
| 174 |
+
if self.gpu_enabled and torch.cuda.is_available():
|
| 175 |
+
tensor = tensor.cuda()
|
| 176 |
+
|
| 177 |
+
self.model.eval()
|
| 178 |
+
|
| 179 |
+
with torch.inference_mode():
|
| 180 |
+
if long_inference or len(bits) > ctx_bits:
|
| 181 |
+
# Long sequence inference
|
| 182 |
+
output, telemetry = infer_long_sequence(
|
| 183 |
+
self.model, tensor.unsqueeze(0),
|
| 184 |
+
ctx_bits=ctx_bits, overlap=overlap
|
| 185 |
+
)
|
| 186 |
+
else:
|
| 187 |
+
# Standard inference with safety gates
|
| 188 |
+
output, telemetry = hil_safe_inference(
|
| 189 |
+
self.model, tensor.unsqueeze(0),
|
| 190 |
+
c_floor=self.c_floor, s_floor=self.s_floor
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# Update telemetry
|
| 194 |
+
self._update_telemetry(telemetry)
|
| 195 |
+
|
| 196 |
+
output_bits = output.squeeze(0).cpu().tolist()
|
| 197 |
+
return f"β
Inference completed. Output length: {len(output_bits)}", output_bits
|
| 198 |
+
|
| 199 |
+
except Exception as e:
|
| 200 |
+
return f"β Inference failed: {str(e)}", None
|
| 201 |
+
|
| 202 |
+
def text_inference(self, text_input):
|
| 203 |
+
"""Convert text to bits, run inference, convert back to text."""
|
| 204 |
+
try:
|
| 205 |
+
# Text to bits
|
| 206 |
+
bits = text_to_bits(text_input)
|
| 207 |
+
|
| 208 |
+
# Run inference
|
| 209 |
+
result, output_bits = self.inference(bits)
|
| 210 |
+
|
| 211 |
+
if output_bits is None:
|
| 212 |
+
return result, None
|
| 213 |
+
|
| 214 |
+
# Convert back to text
|
| 215 |
+
try:
|
| 216 |
+
output_text = bits_to_text(output_bits)
|
| 217 |
+
return f"β
Text inference completed.", output_text
|
| 218 |
+
except Exception as e:
|
| 219 |
+
return f"β
Inference completed, but text conversion failed: {str(e)}", str(output_bits)
|
| 220 |
+
|
| 221 |
+
except Exception as e:
|
| 222 |
+
return f"β Text inference failed: {str(e)}", None
|
| 223 |
+
|
| 224 |
+
def scale_model(self, width_multiplier):
|
| 225 |
+
"""Scale up model width."""
|
| 226 |
+
if self.model is None:
|
| 227 |
+
return "β Model not initialized"
|
| 228 |
+
|
| 229 |
+
try:
|
| 230 |
+
with self.lock:
|
| 231 |
+
self.model = expand_model(self.model, width_multiplier)
|
| 232 |
+
return f"β
Model scaled by factor {width_multiplier}"
|
| 233 |
+
except Exception as e:
|
| 234 |
+
return f"β Model scaling failed: {str(e)}"
|
| 235 |
+
|
| 236 |
+
def collapse_model(self, cluster_bits, target_params, width_scale=1.0):
|
| 237 |
+
"""Collapse model using cluster analysis."""
|
| 238 |
+
if self.model is None:
|
| 239 |
+
return "β Model not initialized"
|
| 240 |
+
|
| 241 |
+
try:
|
| 242 |
+
# Parse inputs
|
| 243 |
+
if isinstance(cluster_bits, str):
|
| 244 |
+
clusters = json.loads(cluster_bits)
|
| 245 |
+
else:
|
| 246 |
+
clusters = cluster_bits
|
| 247 |
+
|
| 248 |
+
if isinstance(target_params, str):
|
| 249 |
+
params = json.loads(target_params)
|
| 250 |
+
else:
|
| 251 |
+
params = target_params
|
| 252 |
+
|
| 253 |
+
with self.lock:
|
| 254 |
+
collapsed_model = collapse_submodel(
|
| 255 |
+
self.model, clusters, params, width_scale
|
| 256 |
+
)
|
| 257 |
+
self.model = collapsed_model
|
| 258 |
+
return f"β
Model collapsed successfully"
|
| 259 |
+
except Exception as e:
|
| 260 |
+
return f"β Model collapse failed: {str(e)}"
|
| 261 |
+
|
| 262 |
+
def get_model_status(self):
|
| 263 |
+
"""Get current model status and configuration."""
|
| 264 |
+
if self.model is None:
|
| 265 |
+
return "β No model initialized"
|
| 266 |
+
|
| 267 |
+
try:
|
| 268 |
+
param_count = sum(p.numel() for p in self.model.parameters())
|
| 269 |
+
status = {
|
| 270 |
+
"initialized": True,
|
| 271 |
+
"parameters": param_count,
|
| 272 |
+
"config": self.config,
|
| 273 |
+
"gpu_enabled": self.gpu_enabled,
|
| 274 |
+
"qat_enabled": self.qat_enabled,
|
| 275 |
+
"compression_enabled": self.compression_enabled,
|
| 276 |
+
"diffusion_enabled": self.diffusion_enabled,
|
| 277 |
+
}
|
| 278 |
+
return json.dumps(status, indent=2)
|
| 279 |
+
except Exception as e:
|
| 280 |
+
return f"β Status check failed: {str(e)}"
|
| 281 |
+
|
| 282 |
+
def get_telemetry_plot(self):
|
| 283 |
+
"""Generate telemetry plot."""
|
| 284 |
+
try:
|
| 285 |
+
if not any(self.telemetry_log.values()):
|
| 286 |
+
# Return empty plot
|
| 287 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 288 |
+
ax.text(0.5, 0.5, 'No telemetry data yet', ha='center', va='center', transform=ax.transAxes)
|
| 289 |
+
ax.set_title('Telemetry Metrics')
|
| 290 |
+
return fig
|
| 291 |
+
|
| 292 |
+
fig, axes = plot_telemetry(
|
| 293 |
+
self.telemetry_log,
|
| 294 |
+
k_floor=0.5, # Negentropy floor
|
| 295 |
+
c_floor=self.c_floor,
|
| 296 |
+
s_floor=self.s_floor
|
| 297 |
+
)
|
| 298 |
+
return fig
|
| 299 |
+
except Exception as e:
|
| 300 |
+
# Return error plot
|
| 301 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 302 |
+
ax.text(0.5, 0.5, f'Plot error: {str(e)}', ha='center', va='center', transform=ax.transAxes)
|
| 303 |
+
ax.set_title('Telemetry Metrics - Error')
|
| 304 |
+
return fig
|
| 305 |
+
|
| 306 |
+
def _update_telemetry(self, telemetry_dict):
|
| 307 |
+
"""Update telemetry log with new values."""
|
| 308 |
+
if not telemetry_dict:
|
| 309 |
+
return
|
| 310 |
+
|
| 311 |
+
step = len(self.telemetry_log["steps"])
|
| 312 |
+
self.telemetry_log["steps"].append(step)
|
| 313 |
+
|
| 314 |
+
# Extract metrics with defaults
|
| 315 |
+
self.telemetry_log["negentropy"].append(
|
| 316 |
+
float(telemetry_dict.get("negentropy", torch.tensor(0.0)).mean().item())
|
| 317 |
+
)
|
| 318 |
+
self.telemetry_log["lz_complexity"].append(
|
| 319 |
+
float(telemetry_dict.get("lz_complexity_logits", torch.tensor(0.0)).mean().item())
|
| 320 |
+
)
|
| 321 |
+
self.telemetry_log["symbiosis_score"].append(
|
| 322 |
+
float(telemetry_dict.get("symbiosis_score", torch.tensor(0.0)).mean().item())
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
def huggingface_upload(self, repo_id, hf_token=None):
|
| 326 |
+
"""Upload model to HuggingFace."""
|
| 327 |
+
if self.model is None:
|
| 328 |
+
return "β Model not initialized"
|
| 329 |
+
|
| 330 |
+
try:
|
| 331 |
+
if hf_token:
|
| 332 |
+
hf_login(hf_token)
|
| 333 |
+
|
| 334 |
+
save_checkpoint(self.model, repo_id, self.config)
|
| 335 |
+
return f"β
Model uploaded to {repo_id}"
|
| 336 |
+
except Exception as e:
|
| 337 |
+
return f"β HF upload failed: {str(e)}"
|
| 338 |
+
|
| 339 |
+
def huggingface_download(self, repo_id, hf_token=None):
|
| 340 |
+
"""Download model from HuggingFace."""
|
| 341 |
+
try:
|
| 342 |
+
if hf_token:
|
| 343 |
+
hf_login(hf_token)
|
| 344 |
+
|
| 345 |
+
with self.lock:
|
| 346 |
+
model, config = download_checkpoint(repo_id)
|
| 347 |
+
self.model = model
|
| 348 |
+
self.config = config
|
| 349 |
+
|
| 350 |
+
return f"β
Model downloaded from {repo_id}"
|
| 351 |
+
except Exception as e:
|
| 352 |
+
return f"β HF download failed: {str(e)}"
|
| 353 |
+
|
| 354 |
+
def mcp_request(self, endpoint, data=None, method="POST"):
|
| 355 |
+
"""Make request to MCP server if available."""
|
| 356 |
+
if not self.mcp_server_addr:
|
| 357 |
+
return "β MCP server not configured"
|
| 358 |
+
|
| 359 |
+
try:
|
| 360 |
+
url = self.mcp_server_addr.rstrip("/") + endpoint
|
| 361 |
+
if method == "POST":
|
| 362 |
+
resp = requests.post(url, json=data, timeout=30)
|
| 363 |
+
else:
|
| 364 |
+
resp = requests.get(url, timeout=30)
|
| 365 |
+
|
| 366 |
+
resp.raise_for_status()
|
| 367 |
+
|
| 368 |
+
if resp.headers.get("Content-Type", "").startswith("image/"):
|
| 369 |
+
return "β
MCP request completed (binary data)"
|
| 370 |
+
return f"β
MCP request completed: {resp.json()}"
|
| 371 |
+
except Exception as e:
|
| 372 |
+
return f"β MCP request failed: {str(e)}"
|
| 373 |
+
|
| 374 |
+
# Global manager instance
|
| 375 |
+
manager = GradioModelManager()
|
| 376 |
+
|
| 377 |
+
def create_gradio_interface():
|
| 378 |
+
"""Create the main Gradio interface with all BitTransformerLM features."""
|
| 379 |
+
|
| 380 |
+
# Helper functions for Gradio callbacks
|
| 381 |
+
def init_model_callback(d_model, nhead, num_layers, dim_feedforward, max_seq_len,
|
| 382 |
+
chunk_size, overlap, reversible, use_checkpoint, act_threshold,
|
| 383 |
+
c_floor, s_floor):
|
| 384 |
+
"""Initialize model with form parameters."""
|
| 385 |
+
config = {
|
| 386 |
+
"d_model": d_model,
|
| 387 |
+
"nhead": nhead,
|
| 388 |
+
"num_layers": num_layers,
|
| 389 |
+
"dim_feedforward": dim_feedforward,
|
| 390 |
+
"max_seq_len": max_seq_len,
|
| 391 |
+
"chunk_size": chunk_size if chunk_size > 0 else None,
|
| 392 |
+
"overlap": overlap,
|
| 393 |
+
"reversible": reversible,
|
| 394 |
+
"use_checkpoint": use_checkpoint,
|
| 395 |
+
"act_threshold": act_threshold
|
| 396 |
+
}
|
| 397 |
+
|
| 398 |
+
# Update safety floors
|
| 399 |
+
manager.c_floor = c_floor
|
| 400 |
+
manager.s_floor = s_floor
|
| 401 |
+
|
| 402 |
+
result = manager.init_model(config)
|
| 403 |
+
status = manager.get_model_status()
|
| 404 |
+
plot = manager.get_telemetry_plot()
|
| 405 |
+
|
| 406 |
+
return result, status, plot
|
| 407 |
+
|
| 408 |
+
def train_callback(bits_input, epochs, file_input):
|
| 409 |
+
"""Training callback with file upload support."""
|
| 410 |
+
if file_input is not None:
|
| 411 |
+
# Process uploaded file
|
| 412 |
+
try:
|
| 413 |
+
if file_input.name.endswith(('.txt', '.md')):
|
| 414 |
+
with open(file_input.name, 'r') as f:
|
| 415 |
+
text = f.read()
|
| 416 |
+
bits = text_to_bits(text)
|
| 417 |
+
else:
|
| 418 |
+
with open(file_input.name, 'rb') as f:
|
| 419 |
+
data = f.read()
|
| 420 |
+
# Convert bytes to bits
|
| 421 |
+
bits = []
|
| 422 |
+
for byte in data:
|
| 423 |
+
for i in range(8):
|
| 424 |
+
bits.append((byte >> (7-i)) & 1)
|
| 425 |
+
|
| 426 |
+
result, loss, ratio = manager.train_step(bits, epochs)
|
| 427 |
+
except Exception as e:
|
| 428 |
+
result = f"β File processing failed: {str(e)}"
|
| 429 |
+
loss, ratio = None, None
|
| 430 |
+
else:
|
| 431 |
+
result, loss, ratio = manager.train_step(bits_input, epochs)
|
| 432 |
+
|
| 433 |
+
status = manager.get_model_status()
|
| 434 |
+
plot = manager.get_telemetry_plot()
|
| 435 |
+
|
| 436 |
+
return result, status, plot, f"Compression Ratio: {ratio:.2f}" if ratio else ""
|
| 437 |
+
|
| 438 |
+
def inference_callback(bits_input, file_input):
|
| 439 |
+
"""Standard inference callback."""
|
| 440 |
+
if file_input is not None:
|
| 441 |
+
# Process uploaded file similar to training
|
| 442 |
+
try:
|
| 443 |
+
if file_input.name.endswith(('.txt', '.md')):
|
| 444 |
+
with open(file_input.name, 'r') as f:
|
| 445 |
+
text = f.read()
|
| 446 |
+
bits = text_to_bits(text)
|
| 447 |
+
else:
|
| 448 |
+
with open(file_input.name, 'rb') as f:
|
| 449 |
+
data = f.read()
|
| 450 |
+
bits = []
|
| 451 |
+
for byte in data:
|
| 452 |
+
for i in range(8):
|
| 453 |
+
bits.append((byte >> (7-i)) & 1)
|
| 454 |
+
|
| 455 |
+
result, output_bits = manager.inference(bits)
|
| 456 |
+
except Exception as e:
|
| 457 |
+
result = f"β File processing failed: {str(e)}"
|
| 458 |
+
output_bits = None
|
| 459 |
+
else:
|
| 460 |
+
result, output_bits = manager.inference(bits_input)
|
| 461 |
+
|
| 462 |
+
return result, str(output_bits) if output_bits else ""
|
| 463 |
+
|
| 464 |
+
def long_inference_callback(bits_input, ctx_bits, overlap):
|
| 465 |
+
"""Long sequence inference callback."""
|
| 466 |
+
result, output_bits = manager.inference(bits_input, long_inference=True,
|
| 467 |
+
ctx_bits=ctx_bits, overlap=overlap)
|
| 468 |
+
return result, str(output_bits) if output_bits else ""
|
| 469 |
+
|
| 470 |
+
def text_inference_callback(text_input):
|
| 471 |
+
"""Text-to-text inference callback."""
|
| 472 |
+
result, output_text = manager.text_inference(text_input)
|
| 473 |
+
return result, output_text if output_text else ""
|
| 474 |
+
|
| 475 |
+
# Create Gradio interface
|
| 476 |
+
with gr.Blocks(title="BitTransformerLM Dashboard",
|
| 477 |
+
theme=gr.themes.Soft()) as interface:
|
| 478 |
+
|
| 479 |
+
gr.Markdown("# π€ BitTransformerLM Interactive Dashboard")
|
| 480 |
+
gr.Markdown("*Experimental bit-native transformer with comprehensive training and inference capabilities*")
|
| 481 |
+
|
| 482 |
+
with gr.Tab("ποΈ Model Configuration"):
|
| 483 |
+
gr.Markdown("## Initialize BitTransformerLM")
|
| 484 |
+
|
| 485 |
+
with gr.Row():
|
| 486 |
+
with gr.Column():
|
| 487 |
+
d_model = gr.Number(label="d_model", value=64, info="Model width")
|
| 488 |
+
nhead = gr.Number(label="nhead", value=4, info="Attention heads")
|
| 489 |
+
num_layers = gr.Number(label="num_layers", value=2, info="Transformer layers")
|
| 490 |
+
dim_feedforward = gr.Number(label="dim_feedforward", value=256, info="FFN dimension")
|
| 491 |
+
|
| 492 |
+
with gr.Column():
|
| 493 |
+
max_seq_len = gr.Number(label="max_seq_len", value=512, info="Max sequence length")
|
| 494 |
+
chunk_size = gr.Number(label="chunk_size", value=0, info="Chunk size (0=auto)")
|
| 495 |
+
overlap = gr.Number(label="overlap", value=64, info="Sliding window overlap")
|
| 496 |
+
act_threshold = gr.Number(label="act_threshold", value=0.95, info="ACT halt threshold")
|
| 497 |
+
|
| 498 |
+
with gr.Row():
|
| 499 |
+
reversible = gr.Checkbox(label="Reversible Layers", value=False)
|
| 500 |
+
use_checkpoint = gr.Checkbox(label="Gradient Checkpointing", value=True)
|
| 501 |
+
|
| 502 |
+
with gr.Row():
|
| 503 |
+
c_floor = gr.Number(label="c_floor", value=0.3, info="Complexity safety floor")
|
| 504 |
+
s_floor = gr.Number(label="s_floor", value=0.5, info="Symbiosis safety floor")
|
| 505 |
+
|
| 506 |
+
init_btn = gr.Button("π Initialize Model", variant="primary")
|
| 507 |
+
init_output = gr.Textbox(label="Initialization Result", interactive=False)
|
| 508 |
+
|
| 509 |
+
with gr.Tab("π― Training"):
|
| 510 |
+
gr.Markdown("## Train BitTransformerLM")
|
| 511 |
+
|
| 512 |
+
with gr.Row():
|
| 513 |
+
with gr.Column():
|
| 514 |
+
train_bits = gr.Textbox(
|
| 515 |
+
label="Bit Input",
|
| 516 |
+
placeholder="0 1 0 1 or [0,1,0,1] or upload file",
|
| 517 |
+
lines=3
|
| 518 |
+
)
|
| 519 |
+
train_file = gr.File(label="Upload Training File", file_types=[".txt", ".md", ".bin"])
|
| 520 |
+
train_epochs = gr.Number(label="Epochs", value=1, minimum=1)
|
| 521 |
+
|
| 522 |
+
with gr.Column():
|
| 523 |
+
train_btn = gr.Button("π Start Training", variant="primary")
|
| 524 |
+
train_output = gr.Textbox(label="Training Result", interactive=False)
|
| 525 |
+
compression_output = gr.Textbox(label="Compression Info", interactive=False)
|
| 526 |
+
|
| 527 |
+
with gr.Tab("π§ Inference"):
|
| 528 |
+
with gr.Tab("Standard Inference"):
|
| 529 |
+
gr.Markdown("## Standard Inference")
|
| 530 |
+
|
| 531 |
+
with gr.Row():
|
| 532 |
+
with gr.Column():
|
| 533 |
+
infer_bits = gr.Textbox(
|
| 534 |
+
label="Bit Input",
|
| 535 |
+
placeholder="0 1 0 1 or [0,1,0,1]",
|
| 536 |
+
lines=3
|
| 537 |
+
)
|
| 538 |
+
infer_file = gr.File(label="Upload Inference File")
|
| 539 |
+
|
| 540 |
+
with gr.Column():
|
| 541 |
+
infer_btn = gr.Button("π― Run Inference", variant="primary")
|
| 542 |
+
infer_result = gr.Textbox(label="Result", interactive=False)
|
| 543 |
+
infer_output = gr.Textbox(label="Output Bits", lines=5, interactive=False)
|
| 544 |
+
|
| 545 |
+
with gr.Tab("Long Sequence Inference"):
|
| 546 |
+
gr.Markdown("## Long Sequence Inference")
|
| 547 |
+
|
| 548 |
+
with gr.Row():
|
| 549 |
+
with gr.Column():
|
| 550 |
+
long_bits = gr.Textbox(
|
| 551 |
+
label="Long Bit Sequence",
|
| 552 |
+
lines=5,
|
| 553 |
+
placeholder="Long sequence of bits..."
|
| 554 |
+
)
|
| 555 |
+
long_ctx_bits = gr.Number(label="Context Bits", value=4096)
|
| 556 |
+
long_overlap = gr.Number(label="Overlap", value=256)
|
| 557 |
+
|
| 558 |
+
with gr.Column():
|
| 559 |
+
long_infer_btn = gr.Button("π Run Long Inference", variant="primary")
|
| 560 |
+
long_result = gr.Textbox(label="Result", interactive=False)
|
| 561 |
+
long_output = gr.Textbox(label="Output Bits", lines=5, interactive=False)
|
| 562 |
+
|
| 563 |
+
with gr.Tab("Text Inference"):
|
| 564 |
+
gr.Markdown("## Text-to-Text Inference")
|
| 565 |
+
|
| 566 |
+
with gr.Row():
|
| 567 |
+
with gr.Column():
|
| 568 |
+
text_input = gr.Textbox(
|
| 569 |
+
label="Input Text",
|
| 570 |
+
placeholder="Enter text to process...",
|
| 571 |
+
lines=3
|
| 572 |
+
)
|
| 573 |
+
text_infer_btn = gr.Button("π Process Text", variant="primary")
|
| 574 |
+
|
| 575 |
+
with gr.Column():
|
| 576 |
+
text_result = gr.Textbox(label="Result", interactive=False)
|
| 577 |
+
text_output = gr.Textbox(
|
| 578 |
+
label="Output Text",
|
| 579 |
+
lines=5,
|
| 580 |
+
interactive=False
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
with gr.Tab("βοΈ Model Operations"):
|
| 584 |
+
with gr.Tab("Scale Model"):
|
| 585 |
+
gr.Markdown("## Scale Model Width")
|
| 586 |
+
|
| 587 |
+
with gr.Row():
|
| 588 |
+
width_mult = gr.Number(label="Width Multiplier", value=1.5, step=0.1)
|
| 589 |
+
scale_btn = gr.Button("π Scale Model", variant="secondary")
|
| 590 |
+
|
| 591 |
+
scale_output = gr.Textbox(label="Scaling Result", interactive=False)
|
| 592 |
+
|
| 593 |
+
with gr.Tab("Collapse Model"):
|
| 594 |
+
gr.Markdown("## Collapse Submodel")
|
| 595 |
+
|
| 596 |
+
with gr.Row():
|
| 597 |
+
with gr.Column():
|
| 598 |
+
cluster_bits = gr.Textbox(
|
| 599 |
+
label="Cluster Bits (JSON)",
|
| 600 |
+
placeholder='[[0,1,0,1],[1,1,0,0]]',
|
| 601 |
+
lines=3
|
| 602 |
+
)
|
| 603 |
+
target_params = gr.Textbox(
|
| 604 |
+
label="Target Parameters (JSON)",
|
| 605 |
+
placeholder='{"d_model":32,"nhead":4,"num_layers":1}',
|
| 606 |
+
lines=3
|
| 607 |
+
)
|
| 608 |
+
width_scale = gr.Number(label="Width Scale", value=1.0, step=0.1)
|
| 609 |
+
|
| 610 |
+
with gr.Column():
|
| 611 |
+
collapse_btn = gr.Button("ποΈ Collapse Model", variant="secondary")
|
| 612 |
+
collapse_output = gr.Textbox(label="Collapse Result", interactive=False)
|
| 613 |
+
|
| 614 |
+
with gr.Tab("π Monitoring"):
|
| 615 |
+
with gr.Row():
|
| 616 |
+
with gr.Column():
|
| 617 |
+
gr.Markdown("## Model Status")
|
| 618 |
+
status_output = gr.Code(label="Current Status", language="json")
|
| 619 |
+
refresh_btn = gr.Button("π Refresh Status")
|
| 620 |
+
|
| 621 |
+
with gr.Column():
|
| 622 |
+
gr.Markdown("## System Settings")
|
| 623 |
+
|
| 624 |
+
with gr.Row():
|
| 625 |
+
gpu_checkbox = gr.Checkbox(label="π₯ Enable GPU/FSDP", value=False)
|
| 626 |
+
qat_checkbox = gr.Checkbox(label="β‘ Enable 4-bit QAT", value=False)
|
| 627 |
+
|
| 628 |
+
with gr.Row():
|
| 629 |
+
compression_checkbox = gr.Checkbox(label="ποΈ Enable Compression", value=False)
|
| 630 |
+
diffusion_checkbox = gr.Checkbox(label="π Enable Diffusion Mode", value=False)
|
| 631 |
+
|
| 632 |
+
gr.Markdown("## π Telemetry Metrics")
|
| 633 |
+
telemetry_plot = gr.Plot(label="K/C/S Metrics Over Time")
|
| 634 |
+
|
| 635 |
+
with gr.Tab("βοΈ HuggingFace Integration"):
|
| 636 |
+
gr.Markdown("## HuggingFace Model Hub")
|
| 637 |
+
|
| 638 |
+
with gr.Row():
|
| 639 |
+
with gr.Column():
|
| 640 |
+
hf_repo_id = gr.Textbox(label="Repository ID", placeholder="username/model-name")
|
| 641 |
+
hf_token = gr.Textbox(label="HF Token (optional)", type="password")
|
| 642 |
+
|
| 643 |
+
with gr.Column():
|
| 644 |
+
with gr.Row():
|
| 645 |
+
hf_upload_btn = gr.Button("β¬οΈ Upload to HF", variant="secondary")
|
| 646 |
+
hf_download_btn = gr.Button("β¬οΈ Download from HF", variant="secondary")
|
| 647 |
+
|
| 648 |
+
hf_result = gr.Textbox(label="HuggingFace Result", interactive=False)
|
| 649 |
+
|
| 650 |
+
# Event handlers
|
| 651 |
+
init_btn.click(
|
| 652 |
+
init_model_callback,
|
| 653 |
+
inputs=[d_model, nhead, num_layers, dim_feedforward, max_seq_len,
|
| 654 |
+
chunk_size, overlap, reversible, use_checkpoint, act_threshold,
|
| 655 |
+
c_floor, s_floor],
|
| 656 |
+
outputs=[init_output, status_output, telemetry_plot]
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
train_btn.click(
|
| 660 |
+
train_callback,
|
| 661 |
+
inputs=[train_bits, train_epochs, train_file],
|
| 662 |
+
outputs=[train_output, status_output, telemetry_plot, compression_output]
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
infer_btn.click(
|
| 666 |
+
inference_callback,
|
| 667 |
+
inputs=[infer_bits, infer_file],
|
| 668 |
+
outputs=[infer_result, infer_output]
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
long_infer_btn.click(
|
| 672 |
+
long_inference_callback,
|
| 673 |
+
inputs=[long_bits, long_ctx_bits, long_overlap],
|
| 674 |
+
outputs=[long_result, long_output]
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
text_infer_btn.click(
|
| 678 |
+
text_inference_callback,
|
| 679 |
+
inputs=[text_input],
|
| 680 |
+
outputs=[text_result, text_output]
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
+
scale_btn.click(
|
| 684 |
+
manager.scale_model,
|
| 685 |
+
inputs=[width_mult],
|
| 686 |
+
outputs=[scale_output]
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
collapse_btn.click(
|
| 690 |
+
manager.collapse_model,
|
| 691 |
+
inputs=[cluster_bits, target_params, width_scale],
|
| 692 |
+
outputs=[collapse_output]
|
| 693 |
+
)
|
| 694 |
+
|
| 695 |
+
refresh_btn.click(
|
| 696 |
+
manager.get_model_status,
|
| 697 |
+
outputs=[status_output]
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
hf_upload_btn.click(
|
| 701 |
+
manager.huggingface_upload,
|
| 702 |
+
inputs=[hf_repo_id, hf_token],
|
| 703 |
+
outputs=[hf_result]
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
hf_download_btn.click(
|
| 707 |
+
manager.huggingface_download,
|
| 708 |
+
inputs=[hf_repo_id, hf_token],
|
| 709 |
+
outputs=[hf_result]
|
| 710 |
+
)
|
| 711 |
+
|
| 712 |
+
# System settings callbacks
|
| 713 |
+
def update_gpu_setting(enabled):
|
| 714 |
+
manager.gpu_enabled = enabled
|
| 715 |
+
return f"GPU/FSDP: {'Enabled' if enabled else 'Disabled'}"
|
| 716 |
+
|
| 717 |
+
def update_qat_setting(enabled):
|
| 718 |
+
manager.qat_enabled = enabled
|
| 719 |
+
return f"QAT: {'Enabled' if enabled else 'Disabled'}"
|
| 720 |
+
|
| 721 |
+
def update_compression_setting(enabled):
|
| 722 |
+
manager.compression_enabled = enabled
|
| 723 |
+
return f"Compression: {'Enabled' if enabled else 'Disabled'}"
|
| 724 |
+
|
| 725 |
+
def update_diffusion_setting(enabled):
|
| 726 |
+
manager.diffusion_enabled = enabled
|
| 727 |
+
return f"Diffusion: {'Enabled' if enabled else 'Disabled'}"
|
| 728 |
+
|
| 729 |
+
# Auto-refresh telemetry every 10 seconds
|
| 730 |
+
interface.load(
|
| 731 |
+
manager.get_telemetry_plot,
|
| 732 |
+
outputs=[telemetry_plot],
|
| 733 |
+
every=10
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
# Load initial status
|
| 737 |
+
interface.load(
|
| 738 |
+
manager.get_model_status,
|
| 739 |
+
outputs=[status_output]
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
return interface
|
| 743 |
+
|
| 744 |
+
def run_gradio_server(host="127.0.0.1", port=7860, share=False):
|
| 745 |
+
"""Run the Gradio server."""
|
| 746 |
+
interface = create_gradio_interface()
|
| 747 |
+
|
| 748 |
+
print("π Starting BitTransformerLM Gradio Dashboard...")
|
| 749 |
+
print(f"π Server will be available at: http://{host}:{port}")
|
| 750 |
+
|
| 751 |
+
if os.getenv("MCP_SERVER_ADDR"):
|
| 752 |
+
print(f"π MCP Server configured at: {os.getenv('MCP_SERVER_ADDR')}")
|
| 753 |
+
|
| 754 |
+
interface.launch(
|
| 755 |
+
server_name=host,
|
| 756 |
+
server_port=port,
|
| 757 |
+
share=share,
|
| 758 |
+
show_error=True,
|
| 759 |
+
debug=True
|
| 760 |
+
)
|
| 761 |
+
|
| 762 |
+
if __name__ == "__main__":
|
| 763 |
+
# Support both local development and HF Spaces
|
| 764 |
+
if os.getenv("SPACE_ID"):
|
| 765 |
+
# Running on HuggingFace Spaces
|
| 766 |
+
print("π€ Running on HuggingFace Spaces")
|
| 767 |
+
interface = create_gradio_interface()
|
| 768 |
+
interface.launch()
|
| 769 |
+
else:
|
| 770 |
+
# Local development
|
| 771 |
+
import argparse
|
| 772 |
+
parser = argparse.ArgumentParser(description="BitTransformerLM Gradio Dashboard")
|
| 773 |
+
parser.add_argument("--host", default="127.0.0.1", help="Host address")
|
| 774 |
+
parser.add_argument("--port", type=int, default=7860, help="Port number")
|
| 775 |
+
parser.add_argument("--share", action="store_true", help="Enable sharing")
|
| 776 |
+
|
| 777 |
+
args = parser.parse_args()
|
| 778 |
+
run_gradio_server(args.host, args.port, args.share)
|