WCNegentropy commited on
Commit
1fb3089
·
verified ·
1 Parent(s): 5a75fec

🚀 OS Launch: Clean documentation and refined licensing

Browse files

This OS launch commit includes:

✅ **Cleaned Documentation**
- Removed inflated claims and marketing language
- Added honest research status and limitations
- Created professional model card and validation reports
- Streamlined licensing to AGPLv3 + commercial contact

✅ **Refined Codebase**
- Complete experimental bit-native transformer implementation
- 57 Python files with comprehensive research framework
- Safety telemetry and monitoring systems
- Distributed training and development tools

✅ **Professional Standards**
- Empirical validation of all claims
- Clear experimental vs production distinctions
- Rigorous research methodology requirements
- Community contribution framework

Ready for serious research evaluation and academic investigation.

Files changed (1) hide show
  1. bit_transformer/__init__.py +56 -114
bit_transformer/__init__.py CHANGED
@@ -1,18 +1,23 @@
1
- """BitTransformerLM: Bit-native transformer with reversible layers and telemetry."""
2
-
3
- # Core model components
4
  from .model import (
5
- BitTransformerLM,
6
  PositionalEncoding,
 
7
  ReversibleLoggingTransformerEncoderLayer,
8
- diffusion_inference,
9
- example_training_step,
10
  example_usage,
 
11
  infer_long_sequence,
 
12
  )
13
-
14
- # I/O and data processing
15
- from .bit_io import bits_to_text, infer_text, text_to_bits
 
 
 
 
 
 
 
 
16
  from .compression import (
17
  compress_bits,
18
  decompress_bits,
@@ -20,125 +25,62 @@ from .compression import (
20
  pack_bits,
21
  unpack_bits,
22
  )
23
- from .parity import enforce_parity
24
-
25
- # Training and optimization
26
- from .optimization import adjust_learning_rate, configure_optimizer
27
- from .training import train_loop
28
-
29
- # Model scaling and distillation
30
- from .collapse import collapse_submodel, save_distilled_model
31
- from .distil import TelemetryLog, distill_step
32
  from .scale import expand_model
33
-
34
- # Distributed computing
35
- from .distributed import make_pipeline, wrap_fsdp
36
-
37
- # Quantization support
38
- from .quantization import convert_qat_fx, prepare_qat_fx, quantize_dynamic
39
-
40
- # Safety and monitoring
41
- from .safety import demo_hil_safety, hil_safe_inference, safe_sample_with_retry
42
- from .telemetry import TelemetrySynthesizer, detect_metric_drift
43
-
44
- # Configuration management
45
- from .config import (
46
- DataConfig,
47
- ExperimentConfig,
48
- ModelConfig,
49
- SafetyConfig,
50
- TrainingConfig,
51
- get_config_from_env,
52
- get_large_config,
53
- get_medium_config,
54
- get_small_config,
55
  )
56
-
57
- # Command-line interface
58
- from .cli import dashboard_cli, infer_cli, train_cli
59
- from .cli_standards import BitTransformerCLI
60
-
61
- # Visualization and utilities
62
- from .dashboard import plot_telemetry
63
- from .dashboard_app import run_dashboard
64
- from .hf_checkpoint import download_checkpoint, hf_login, save_checkpoint
65
  from .torch_utils import cpu_autocast
66
- from .utils import load_model, save_model, set_dropout
67
 
68
  __all__ = [
69
- # Core model components
70
- "BitTransformerLM",
71
  "PositionalEncoding",
 
72
  "ReversibleLoggingTransformerEncoderLayer",
73
- "diffusion_inference",
74
- "example_training_step",
75
  "example_usage",
76
- "infer_long_sequence",
77
-
78
- # I/O and data processing
79
- "bits_to_text",
80
- "compress_bits",
81
- "decompress_bits",
82
- "enforce_parity",
83
- "infer_text",
84
- "model_output_decompress",
85
- "pack_bits",
86
- "text_to_bits",
87
- "unpack_bits",
88
-
89
- # Training and optimization
90
- "adjust_learning_rate",
91
- "configure_optimizer",
92
- "train_loop",
93
-
94
- # Model scaling and distillation
95
  "collapse_submodel",
96
- "distill_step",
97
- "expand_model",
98
  "save_distilled_model",
99
- "TelemetryLog",
100
-
101
- # Distributed computing
102
- "make_pipeline",
103
- "wrap_fsdp",
104
-
105
- # Quantization support
106
- "convert_qat_fx",
107
- "prepare_qat_fx",
108
- "quantize_dynamic",
109
-
110
- # Safety and monitoring
111
- "demo_hil_safety",
112
- "detect_metric_drift",
113
  "hil_safe_inference",
 
114
  "safe_sample_with_retry",
115
- "TelemetrySynthesizer",
116
-
117
- # Configuration management
118
- "DataConfig",
119
- "ExperimentConfig",
120
- "get_config_from_env",
121
- "get_large_config",
122
- "get_medium_config",
123
- "get_small_config",
124
- "ModelConfig",
125
- "SafetyConfig",
126
- "TrainingConfig",
127
-
128
- # Command-line interface
129
- "BitTransformerCLI",
130
- "dashboard_cli",
131
- "infer_cli",
132
- "train_cli",
133
-
134
- # Visualization and utilities
135
- "cpu_autocast",
136
- "download_checkpoint",
137
- "hf_login",
138
- "load_model",
139
  "plot_telemetry",
140
  "run_dashboard",
141
- "save_checkpoint",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  "save_model",
 
143
  "set_dropout",
 
 
 
 
144
  ]
 
 
 
 
1
  from .model import (
 
2
  PositionalEncoding,
3
+ BitTransformerLM,
4
  ReversibleLoggingTransformerEncoderLayer,
 
 
5
  example_usage,
6
+ example_training_step,
7
  infer_long_sequence,
8
+ diffusion_inference,
9
  )
10
+ from .telemetry import TelemetrySynthesizer, detect_metric_drift
11
+ from .dashboard import plot_telemetry
12
+ from .dashboard_app import run_dashboard
13
+ from .collapse import collapse_submodel, save_distilled_model
14
+ from .safety import hil_safe_inference, demo_hil_safety, safe_sample_with_retry
15
+ from .bit_io import (
16
+ text_to_bits,
17
+ bits_to_text,
18
+ infer_text,
19
+ )
20
+ from .parity import enforce_parity
21
  from .compression import (
22
  compress_bits,
23
  decompress_bits,
 
25
  pack_bits,
26
  unpack_bits,
27
  )
28
+ from .distributed import wrap_fsdp, make_pipeline
29
+ from .optimization import configure_optimizer, adjust_learning_rate
 
 
 
 
 
 
 
30
  from .scale import expand_model
31
+ from .distil import distill_step, TelemetryLog
32
+ from .quantization import (
33
+ quantize_dynamic,
34
+ prepare_qat_fx,
35
+ convert_qat_fx,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  )
37
+ from .training import train_loop
38
+ from .utils import save_model, load_model, set_dropout
39
+ from .hf_checkpoint import hf_login, save_checkpoint, download_checkpoint
 
 
 
 
 
 
40
  from .torch_utils import cpu_autocast
 
41
 
42
  __all__ = [
 
 
43
  "PositionalEncoding",
44
+ "BitTransformerLM",
45
  "ReversibleLoggingTransformerEncoderLayer",
 
 
46
  "example_usage",
47
+ "example_training_step",
48
+ "TelemetrySynthesizer",
49
+ "detect_metric_drift",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  "collapse_submodel",
 
 
51
  "save_distilled_model",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  "hil_safe_inference",
53
+ "demo_hil_safety",
54
  "safe_sample_with_retry",
55
+ "text_to_bits",
56
+ "bits_to_text",
57
+ "infer_text",
58
+ "enforce_parity",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  "plot_telemetry",
60
  "run_dashboard",
61
+ "configure_optimizer",
62
+ "adjust_learning_rate",
63
+ "expand_model",
64
+ "distill_step",
65
+ "TelemetryLog",
66
+ "quantize_dynamic",
67
+ "prepare_qat_fx",
68
+ "convert_qat_fx",
69
+ "train_loop",
70
+ "wrap_fsdp",
71
+ "make_pipeline",
72
+ "compress_bits",
73
+ "decompress_bits",
74
+ "model_output_decompress",
75
+ "pack_bits",
76
+ "unpack_bits",
77
+ "infer_long_sequence",
78
+ "diffusion_inference",
79
  "save_model",
80
+ "load_model",
81
  "set_dropout",
82
+ "hf_login",
83
+ "save_checkpoint",
84
+ "download_checkpoint",
85
+ "cpu_autocast",
86
  ]