VitaliiVrublevskyi's picture
update model card README.md
bca13cc
|
raw
history blame
1.88 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: albert-base-v2-finetuned-mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8676470588235294
          - name: F1
            type: f1
            value: 0.9052631578947367

albert-base-v2-finetuned-mrpc

This model is a fine-tuned version of albert-base-v2 on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3588
  • Accuracy: 0.8676
  • F1: 0.9053

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 35
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 115 0.3543 0.8505 0.8847
No log 2.0 230 0.3077 0.8725 0.9088
No log 3.0 345 0.3588 0.8676 0.9053

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3