VitaliiVrublevskyi's picture
update model card README.md
b968710
|
raw
history blame
2.53 kB
metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: Llama-2-7b-hf-finetuned-mrpc-v0.4
    results: []

Llama-2-7b-hf-finetuned-mrpc-v0.4

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4018
  • Accuracy: 0.8431
  • F1: 0.8877

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.6000000000000003e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss
No log 1.0 230 0.6446 0.7695 0.6542
No log 2.0 460 0.6912 0.7968 0.5938
0.6489 3.0 690 0.7230 0.8151 0.5694
0.6489 4.0 920 0.7230 0.8138 0.5503
0.5299 5.0 1150 0.7402 0.8251 0.5492
0.5299 6.0 1380 0.7794 0.8432 0.4880
0.4687 7.0 1610 0.8064 0.8663 0.4559
0.4687 8.0 1840 0.8186 0.875 0.4298
0.374 9.0 2070 0.8284 0.8818 0.4210
0.374 10.0 2300 0.8456 0.8916 0.3953
0.3096 11.0 2530 0.8431 0.8897 0.4074
0.3096 12.0 2760 0.8407 0.8862 0.4030
0.3096 13.0 2990 0.3982 0.8456 0.8904
0.2799 14.0 3220 0.3873 0.8456 0.8881
0.2799 15.0 3450 0.3939 0.8529 0.8940
0.2511 16.0 3680 0.4018 0.8431 0.8877

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3