metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: funsd-layoutlmv3
type: funsd-layoutlmv3
config: funsd
split: test
args: funsd
metrics:
- name: Precision
type: precision
value: 0.8892100192678227
- name: Recall
type: recall
value: 0.9170392449080974
- name: F1
type: f1
value: 0.9029102470041576
- name: Accuracy
type: accuracy
value: 0.8690122429573279
test
This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5352
- Precision: 0.8892
- Recall: 0.9170
- F1: 0.9029
- Accuracy: 0.8690
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.33 | 100 | 0.7740 | 0.7470 | 0.8127 | 0.7785 | 0.7037 |
No log | 2.67 | 200 | 0.5483 | 0.8111 | 0.8937 | 0.8504 | 0.7910 |
No log | 4.0 | 300 | 0.4411 | 0.8400 | 0.8813 | 0.8601 | 0.8492 |
No log | 5.33 | 400 | 0.4512 | 0.8432 | 0.8952 | 0.8684 | 0.8499 |
0.5705 | 6.67 | 500 | 0.4541 | 0.8865 | 0.9195 | 0.9027 | 0.8652 |
0.5705 | 8.0 | 600 | 0.4939 | 0.8782 | 0.9165 | 0.8969 | 0.8625 |
0.5705 | 9.33 | 700 | 0.5152 | 0.8792 | 0.9151 | 0.8968 | 0.8572 |
0.5705 | 10.67 | 800 | 0.5299 | 0.8856 | 0.9116 | 0.8984 | 0.8663 |
0.5705 | 12.0 | 900 | 0.5162 | 0.8894 | 0.9185 | 0.9037 | 0.8697 |
0.1324 | 13.33 | 1000 | 0.5352 | 0.8892 | 0.9170 | 0.9029 | 0.8690 |
Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3