metadata
license: apache-2.0
base_model: ViktorDo/EcoBERT-Pretrained
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: EcoBERT-finetuned-ner-copious
results: []
EcoBERT-finetuned-ner-copious
This model is a fine-tuned version of ViktorDo/EcoBERT-Pretrained on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0731
- Precision: 0.6213
- Recall: 0.6754
- F1: 0.6472
- Accuracy: 0.9761
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 63 | 0.1220 | 0.3423 | 0.3681 | 0.3547 | 0.9567 |
No log | 2.0 | 126 | 0.0837 | 0.5305 | 0.5797 | 0.5540 | 0.9714 |
No log | 3.0 | 189 | 0.0751 | 0.5950 | 0.6261 | 0.6102 | 0.9749 |
No log | 4.0 | 252 | 0.0729 | 0.6118 | 0.6623 | 0.6360 | 0.9763 |
No log | 5.0 | 315 | 0.0731 | 0.6213 | 0.6754 | 0.6472 | 0.9761 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3