ViktorDo's picture
End of training
432a22c
|
raw
history blame
1.93 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: DeBERTa-finetuned-ner-copious
    results: []

DeBERTa-finetuned-ner-copious

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0499
  • Precision: 0.7867
  • Recall: 0.8333
  • F1: 0.8094
  • Accuracy: 0.9842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 63 0.0632 0.6793 0.7383 0.7076 0.9789
No log 2.0 126 0.0507 0.7559 0.8320 0.7921 0.9837
No log 3.0 189 0.0517 0.7771 0.8306 0.8029 0.9840
No log 4.0 252 0.0517 0.7822 0.8457 0.8127 0.9839
No log 5.0 315 0.0499 0.7867 0.8333 0.8094 0.9842

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3