|
|
|
--- |
|
base_model: unsloth/llama-3-8b-bnb-4bit |
|
library_name: peft 0.13.2 |
|
license: mit |
|
datasets: |
|
- yahma/alpaca-cleaned |
|
language: |
|
- en |
|
--- |
|
How to use : |
|
```python |
|
!pip install peft accelerate bitsandbytes |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
from peft import PeftModel, PeftConfig |
|
|
|
# Load model and tokenizer configurations |
|
config = PeftConfig.from_pretrained("Vijayendra/QST-Llama-8b") |
|
base_model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3-8b-bnb-4bit") |
|
model = PeftModel.from_pretrained(base_model, "Vijayendra/QST-Llama-8b") |
|
tokenizer = AutoTokenizer.from_pretrained("Vijayendra/llama3.0-8B-merged-4bit") |
|
|
|
# Ensure padding token is set for the tokenizer |
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
# Define the inference function with TextStreamer |
|
def generate_answer_with_stream(model, tokenizer, text, max_new_tokens=1024, temperature=0.5, top_k=40, top_p=0.9): |
|
prompt = f"Answer the following question\n\n{text}\n\nQuestion:" |
|
|
|
# Tokenize the input text |
|
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(model.device) |
|
|
|
# Initialize the TextStreamer |
|
streamer = TextStreamer(tokenizer) |
|
|
|
# Generate answer using the model with streaming |
|
with torch.no_grad(): |
|
model.generate( |
|
inputs.input_ids, |
|
attention_mask=inputs.attention_mask, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
do_sample=True, |
|
top_k=top_k, |
|
top_p=top_p, |
|
repetition_penalty=1.2, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
streamer=streamer # Stream output as it's generated |
|
) |
|
|
|
# Input Question |
|
question = "What is quantum mechanics?" |
|
|
|
# Generate and print answer |
|
generate_answer_with_stream(model, tokenizer, question) |
|
|