Vidensogende
commited on
Commit
·
3cb2e49
1
Parent(s):
f24cffe
removed comments
Browse files- handler.py +0 -57
handler.py
CHANGED
@@ -1,59 +1,3 @@
|
|
1 |
-
# import requests
|
2 |
-
# from PIL import Image
|
3 |
-
# from transformers import BlipProcessor, BlipForConditionalGeneration
|
4 |
-
# import torch
|
5 |
-
# from typing import Dict, List, Any
|
6 |
-
|
7 |
-
# class EndpointHandler():
|
8 |
-
# def __init__(self, path=""):
|
9 |
-
# self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
10 |
-
# self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
11 |
-
|
12 |
-
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
# self.model.to(self.device)
|
14 |
-
|
15 |
-
# def process_single_image(self, img_url, text=None):
|
16 |
-
# # Loading and processing the image
|
17 |
-
# raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
18 |
-
# if text:
|
19 |
-
# # Conditional image captioning
|
20 |
-
# inputs = self.processor(raw_image, text, return_tensors="pt").to(self.device)
|
21 |
-
# else:
|
22 |
-
# # Unconditional image captioning
|
23 |
-
# inputs = self.processor(raw_image, return_tensors="pt").to(self.device)
|
24 |
-
|
25 |
-
# out = self.model.generate(**inputs)
|
26 |
-
# return self.processor.decode(out[0], skip_special_tokens=True)
|
27 |
-
|
28 |
-
# def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
29 |
-
# try:
|
30 |
-
# print(f"Received data: {data}")
|
31 |
-
|
32 |
-
# if not data or "image_urls" not in data:
|
33 |
-
# return [{"error": "No image URLs provided in the request."}]
|
34 |
-
|
35 |
-
# img_urls = data.get("image_urls")
|
36 |
-
# texts = data.get("texts", [None] * len(img_urls)) # Texts are optional for conditional captioning
|
37 |
-
|
38 |
-
# # Check if inputs are for single or multiple images
|
39 |
-
# if isinstance(img_urls, str):
|
40 |
-
# img_urls = [img_urls]
|
41 |
-
# texts = [texts]
|
42 |
-
|
43 |
-
# captions = []
|
44 |
-
# for img_url, text in zip(img_urls, texts):
|
45 |
-
# caption = self.process_single_image(img_url, text)
|
46 |
-
# captions.append({"image_url": img_url, "caption": caption})
|
47 |
-
|
48 |
-
# return captions
|
49 |
-
# except Exception as e:
|
50 |
-
# print(f"Error processing data: {e}")
|
51 |
-
# return [{"error": str(e)}]
|
52 |
-
|
53 |
-
# # You may need to add a function to load this handler if the inference toolkit expects it
|
54 |
-
# def get_pipeline(model_dir, task):
|
55 |
-
# return EndpointHandler(model_dir)
|
56 |
-
|
57 |
import requests
|
58 |
from PIL import Image
|
59 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
@@ -69,7 +13,6 @@ class EndpointHandler():
|
|
69 |
self.model.to(self.device)
|
70 |
|
71 |
def process_single_image(self, img_url, text=None):
|
72 |
-
# Loading and processing the image
|
73 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
74 |
if text:
|
75 |
inputs = self.processor(raw_image, text, return_tensors="pt").to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import requests
|
2 |
from PIL import Image
|
3 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|
|
13 |
self.model.to(self.device)
|
14 |
|
15 |
def process_single_image(self, img_url, text=None):
|
|
|
16 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
17 |
if text:
|
18 |
inputs = self.processor(raw_image, text, return_tensors="pt").to(self.device)
|