Venkatesh4342's picture
update model card README.md
624b65c
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-helpdesk-sentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-helpdesk-sentiment
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1923
- Accuracy: 0.9556
- F1: 0.9549
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 0.88 | 100 | 0.4935 | 0.7889 | 0.7840 |
| No log | 1.77 | 200 | 0.2955 | 0.8889 | 0.8867 |
| No log | 2.65 | 300 | 0.1830 | 0.9111 | 0.9093 |
| No log | 3.54 | 400 | 0.1461 | 0.9444 | 0.9431 |
| 0.5007 | 4.42 | 500 | 0.1554 | 0.9556 | 0.9549 |
| 0.5007 | 5.31 | 600 | 0.1923 | 0.9556 | 0.9549 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3