metadata
base_model: BAAI/bge-large-en-v1.5
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4370
- loss:CosineSimilarityLoss
widget:
- source_sentence: >
Construct: Recognise a linear graph from its shape
Subject: Finding the Gradient and Intercept of a Line from the Equation
Question: Use a graphing program (e.g. Desmos) to plot the following pairs
of functions.
\[
y=3 \text { and } y=-2
\]
Tom says both functions are linear
Katie says both functions are vertical lines
Who is correct?
Incorrect Answer: Neither is correct
Correct Answer: Only
Tom
sentences:
- >-
Believes the coefficent of x in an expanded quadratic comes from
multiplying the two numbers in the brackets
- Does not know the properties of a linear graph
- Misremembers the quadratic formula
- source_sentence: >
Construct: Multiply two decimals together with the same number of decimal
places
Subject: Multiplying and Dividing with Decimals
Question: \( 0.6 \times 0.4= \)
Incorrect Answer: \( 2.4 \)
Correct Answer: \( 0.24 \)
sentences:
- >-
When asked to solve simultaneous equations, believes they can just find
values that work in one equation
- >-
Believes the solutions of a quadratic equation are the constants in the
factorised form
- >-
When multiplying decimals, divides by the wrong power of 10 when
reinserting the decimal
- source_sentence: >
Construct: Estimate the volume or capacity of an object
Subject: Volume of Prisms
Question: Each of these measurements matches one of these objects. ![An
image of 4 objects and 4 measurements. The objects are an egg cup, a
cereal box, a chest of drawers and a piggy bank. And, the measurements are
87 cm^3, 1013 cm^3, 4172 cm^3 and 197,177 cm^3.]() Which measurement most
likely matches the egg cup?
Incorrect Answer: \( 197177 \mathrm{~cm}^{3} \)
Correct Answer: \( 87 \mathrm{~cm}^{3} \)
sentences:
- Confuses quadratic and exponential graphs
- Cannot estimate the relative volume order, for different objects
- Does not know how many days are in a leap year
- source_sentence: |
Construct: Carry out division problems involving one negative integer
Subject: Multiplying and Dividing Negative Numbers
Question: \( 12 \div(-4)= \)
Incorrect Answer: \( 3 \)
Correct Answer: \( -3 \)
sentences:
- Believes dividing a positive by a negative gives a positive answer
- >-
Believes -a is always smaller than a, ignoring the possibility that a is
negative
- Subtracts instead of divides
- source_sentence: >
Construct: Construct frequency tables
Subject: Frequency tables
Question: Dave has recorded the number of pets his classmates have in the
frequency table on the right. \begin{tabular}{|c|c|}
\hline Number of pets & Frequency \\
\hline \( 0 \) & \( 4 \) \\
\hline \( 1 \) & \( 6 \) \\
\hline \( 2 \) & \( 3 \) \\
\hline \( 3 \) & \( 2 \) \\
\hline \( 4 \) & \( 5 \) \\
\hline
\end{tabular} If Dave wanted to work out the total number of pets own by
his classmates, what would be a useful column to include?
Incorrect Answer: Number of pets -
Frequency
Correct Answer: Number of pets \( x \) Frequency
sentences:
- Subtracts rather than multiplies when calculating total frequency
- >-
Does not follow the arrows through a function machine, changes the order
of the operations asked.
- >-
Believes the intersection in a prime factor venn diagram does not
contribute to the size of the number represented by a circle
SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("VaggP/bge-fine-tuned")
# Run inference
sentences = [
'\nConstruct: Construct frequency tables\nSubject: Frequency tables\nQuestion: Dave has recorded the number of pets his classmates have in the frequency table on the right. \\begin{tabular}{|c|c|}\n\\hline Number of pets & Frequency \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline\n\\end{tabular} If Dave wanted to work out the total number of pets own by his classmates, what would be a useful column to include?\nIncorrect Answer: Number of pets -\nFrequency\nCorrect Answer: Number of pets Frequency\n',
'Subtracts rather than multiplies when calculating total frequency',
'Does not follow the arrows through a function machine, changes the order of the operations asked.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,370 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 38 tokens
- mean: 98.75 tokens
- max: 414 tokens
- min: 4 tokens
- mean: 14.91 tokens
- max: 38 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.9141 | 500 | 0.0055 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}