cognitive_net / node.py
vincentiusyoshuac's picture
Update node.py
7011a65 verified
import torch
import torch.nn as nn
from collections import deque
from .memory import CognitiveMemory
class CognitiveNode(nn.Module):
"""Unit neuron dengan operasi tensor yang aman"""
def __init__(self, node_id: int, input_size: int):
super().__init__()
self.id = node_id
self.input_size = input_size
# Parameter dengan dimensi sesuai input
self.weights = nn.Parameter(torch.randn(input_size) * 0.1)
self.bias = nn.Parameter(torch.zeros(1))
self.memory = CognitiveMemory(context_size=input_size)
# Sistem neuromodulator
self.dopamine = nn.Parameter(torch.tensor(0.5))
self.serotonin = nn.Parameter(torch.tensor(0.5))
self.recent_activations = deque(maxlen=100)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
# Validasi dimensi input
inputs = inputs.view(-1)
# Integrasi memori
mem_context = self.memory.retrieve(inputs)
combined = inputs * 0.7 + mem_context * 0.3
# Operasi linear yang aman
activation = torch.tanh(torch.dot(combined, self.weights) + self.bias)
modulated = activation * (1 + torch.sigmoid(self.dopamine)
- torch.sigmoid(self.serotonin))
# Update memori dengan scalar value
self.memory.add_memory(inputs, modulated.item())
self.recent_activations.append(modulated.item())
return modulated.squeeze()
def update_plasticity(self, reward: float):
"""Update neurotransmitter dengan clamping"""
with torch.no_grad():
self.dopamine.data = torch.clamp(self.dopamine + reward * 0.1, 0, 1)
self.serotonin.data = torch.clamp(self.serotonin - reward * 0.05, 0, 1)