import torch import torch.nn as nn from collections import deque from .memory import CognitiveMemory class CognitiveNode(nn.Module): """Unit neuron dengan operasi tensor yang aman""" def __init__(self, node_id: int, input_size: int): super().__init__() self.id = node_id self.input_size = input_size # Parameter dengan dimensi sesuai input self.weights = nn.Parameter(torch.randn(input_size) * 0.1) self.bias = nn.Parameter(torch.zeros(1)) self.memory = CognitiveMemory(context_size=input_size) # Sistem neuromodulator self.dopamine = nn.Parameter(torch.tensor(0.5)) self.serotonin = nn.Parameter(torch.tensor(0.5)) self.recent_activations = deque(maxlen=100) def forward(self, inputs: torch.Tensor) -> torch.Tensor: # Validasi dimensi input inputs = inputs.view(-1) # Integrasi memori mem_context = self.memory.retrieve(inputs) combined = inputs * 0.7 + mem_context * 0.3 # Operasi linear yang aman activation = torch.tanh(torch.dot(combined, self.weights) + self.bias) modulated = activation * (1 + torch.sigmoid(self.dopamine) - torch.sigmoid(self.serotonin)) # Update memori dengan scalar value self.memory.add_memory(inputs, modulated.item()) self.recent_activations.append(modulated.item()) return modulated.squeeze() def update_plasticity(self, reward: float): """Update neurotransmitter dengan clamping""" with torch.no_grad(): self.dopamine.data = torch.clamp(self.dopamine + reward * 0.1, 0, 1) self.serotonin.data = torch.clamp(self.serotonin - reward * 0.05, 0, 1)