metadata
base_model: VK246/IC_ver6M_coco_swin_gpt2_50A_1e
tags:
- generated_from_trainer
datasets:
- coco
metrics:
- rouge
model-index:
- name: IC_ver6N_coco_swin_gpt2_50B_1e
results: []
IC_ver6N_coco_swin_gpt2_50B_1e
This model is a fine-tuned version of VK246/IC_ver6M_coco_swin_gpt2_50A_1e on the coco dataset. It achieves the following results on the evaluation set:
- Loss: 0.8687
- Cider: 72.5295
- Rouge1: 41.1356
- Rouge2: 15.6403
- Rougel: 37.2276
- Rougelsum: 37.2406
- Bleu-1: 42.1796
- Bleu-2: 24.0186
- Bleu-3: 14.9974
- Bleu-4: 9.8206
- Gen Len: 11.3063
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Cider | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Gen Len |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3812 | 0.34 | 1000 | 1.0009 | 68.2568 | 39.9649 | 14.5975 | 36.1435 | 36.1441 | 41.3234 | 23.0865 | 14.2103 | 9.2075 | 11.3063 |
0.5147 | 0.68 | 2000 | 0.8687 | 72.5295 | 41.1356 | 15.6403 | 37.2276 | 37.2406 | 42.1796 | 24.0186 | 14.9974 | 9.8206 | 11.3063 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3