VK246's picture
End of training
d47c663
|
raw
history blame
2.02 kB
metadata
base_model: VK246/IC_ver6K_coco_swin_gpt2_50A_1e
tags:
  - generated_from_trainer
datasets:
  - coco
metrics:
  - rouge
model-index:
  - name: IC_ver6L_coco_swin_gpt2_50B_1e
    results: []

IC_ver6L_coco_swin_gpt2_50B_1e

This model is a fine-tuned version of VK246/IC_ver6K_coco_swin_gpt2_50A_1e on the coco dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8371
  • Cider: 72.6054
  • Rouge1: 41.2906
  • Rouge2: 15.8851
  • Rougel: 37.3963
  • Rougelsum: 37.4014
  • Bleu-1: 42.3937
  • Bleu-2: 24.3104
  • Bleu-3: 15.291
  • Bleu-4: 10.0894
  • Gen Len: 11.3063

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Cider Rouge1 Rouge2 Rougel Rougelsum Bleu-1 Bleu-2 Bleu-3 Bleu-4 Gen Len
0.4535 0.34 1000 0.9282 70.2558 40.6455 15.1383 36.6998 36.6999 41.838 23.6151 14.6823 9.6083 11.3063
0.5716 0.68 2000 0.8371 72.6054 41.2906 15.8851 37.3963 37.4014 42.3937 24.3104 15.291 10.0894 11.3063

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3