LunarLanderV2 / README.md
Unterwexi's picture
First Add of Lunar Lander Model
c7a37c6
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO( policy = 'MlpPolicy', env = env, n_steps = 1024, batch_size = 64, n_epochs
= 4, gamma = 0.999, gae_lambda = 0.98, ent_coef = 0.01, verbose=1)
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 242.46 +/- 18.20
name: mean_reward
verified: false
---
# **PPO( policy = 'MlpPolicy', env = env, n_steps = 1024, batch_size = 64, n_epochs = 4, gamma = 0.999, gae_lambda = 0.98, ent_coef = 0.01, verbose=1)** Agent playing **LunarLander-v2**
This is a trained model of a **PPO( policy = 'MlpPolicy', env = env, n_steps = 1024, batch_size = 64, n_epochs = 4, gamma = 0.999, gae_lambda = 0.98, ent_coef = 0.01, verbose=1)** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```