|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Falcon configuration""" |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
from transformers import AutoConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MAELMConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the |
|
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 65024): |
|
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`FalconModel`] |
|
hidden_size (`int`, *optional*, defaults to 4544): |
|
Dimension of the hidden representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 71): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether the model should return the last key/values attentions (not used by all models). Only relevant if |
|
`config.is_decoder=True`. |
|
hidden_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for MLP layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for attention layers. |
|
num_kv_heads (`int`, *optional*): |
|
Number of key-value heads to use per attention layer. If unset, defaults to the same value as |
|
`num_attention_heads`. |
|
alibi (`bool`, *optional*, defaults to `False`): |
|
Whether to use ALiBi positional biases during self-attention. |
|
new_decoder_architecture (`bool`, *optional*, defaults to `False`): |
|
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn` |
|
arguments are ignored, as the new decoder always uses parallel attention. |
|
multi_query (`bool`, *optional*, defaults to `True`): |
|
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`. |
|
parallel_attn (`bool`, *optional*, defaults to `True`): |
|
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive |
|
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`. |
|
bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use bias on Linear layers. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained |
|
Falcon models with RoPE support up to 2048 tokens. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling |
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is |
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update |
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how |
|
these scaling strategies behave: |
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an |
|
experimental feature, subject to breaking API changes in future versions. |
|
bos_token_id (`int`, *optional*, defaults to 11): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 11): |
|
The id of the "end-of-sequence" token. |
|
""" |
|
|
|
model_type = "MAELM" |
|
|
|
|
|
def __init__( |
|
self, |
|
seed=42, |
|
cache_dir=None, |
|
do_train=True, |
|
do_eval=False, |
|
do_test=False, |
|
dataset_name=None, |
|
spect_len=2992, |
|
train_dataset_list=[{'train_file': '/mnt/bn/music-nas-dxj1/datasets/MCC_AIGC/mccaigc_train_1w.csv', \ |
|
'train_tokenized_data': None, 'train_data_root': '/mnt/bn/music-nas-dxj1/datasets/MCC_AIGC/logmel',}], |
|
per_device_eval_batch_size=32, |
|
preprocessing_num_workers=64, |
|
overwrite_cache=True, |
|
output_dir='/mnt/bn/music-nas-dxj1/VWork/ckpts_vault/cap_lynx-apm_umg_PT-mccaigc1w_FT', |
|
save_interval_steps=1000, |
|
overwrite_output_dir=True, |
|
gradient_accumulation_steps=1, |
|
num_train_epochs=50, |
|
per_device_train_batch_size=12, |
|
learning_rate=0.00005, |
|
lm_lr_ratio=0.1, |
|
tokenizer_name='meta-llama/Llama-2-7b-hf', |
|
resume_from_checkpoint=None, |
|
resume_from_pth='epoch_4-step_8639-allstep_60000.pth', |
|
backbone={'name': 'MAEViT', 'arch': 'b', 'patch_size': 16, 'mask_ratio': 0.0, 'img_size': [80, 2992], \ |
|
'ckpt': 'epoch_20.pth'}, |
|
neck={'name': 'LMDecoder', 'patch_size': 16, 'img_size': [80, 2992], 'in_chans': 3, 'embed_dim': 768, \ |
|
'decoder_embed_dim': 4544, 'freeze_decoder': True, 'decoder_type': 'meta-llama/Llama-2-7b-hf'}, |
|
wandb={'proj': 'ATRena_cap', 'expname': 'cap_lynx_apmPT_mccaigc1wFT'}, |
|
**kwargs, |
|
): |
|
self.backbone = backbone |
|
self.neck = neck |
|
self.tokenizer_name = tokenizer_name |
|
self._name_or_path = None |
|
self.resume_from_checkpoint = resume_from_checkpoint |
|
self.resume_from_pth = resume_from_pth |
|
self.auto_map = {"AutoConfig": "configuration_maelm.MAELMConfig", |
|
"AutoModel": "modeling_maelm.MAEForCausalLM"} |
|
|