|
import torch |
|
from mmcls.models import VisionTransformer |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint |
|
import copy |
|
|
|
def build_2d_sincos_position_embedding(patches_resolution, |
|
embed_dims, |
|
temperature=10000., |
|
cls_token=False): |
|
"""The function is to build position embedding for model to obtain the |
|
position information of the image patches.""" |
|
|
|
if isinstance(patches_resolution, int): |
|
patches_resolution = (patches_resolution, patches_resolution) |
|
|
|
h, w = patches_resolution |
|
grid_w = torch.arange(w, dtype=torch.float32) |
|
grid_h = torch.arange(h, dtype=torch.float32) |
|
grid_w, grid_h = torch.meshgrid(grid_w, grid_h) |
|
assert embed_dims % 4 == 0, \ |
|
'Embed dimension must be divisible by 4.' |
|
pos_dim = embed_dims // 4 |
|
|
|
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim |
|
omega = 1. / (temperature**omega) |
|
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega]) |
|
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega]) |
|
|
|
pos_emb = torch.cat( |
|
[ |
|
torch.sin(out_w), |
|
torch.cos(out_w), |
|
torch.sin(out_h), |
|
torch.cos(out_h) |
|
], |
|
dim=1, |
|
)[None, :, :] |
|
|
|
if cls_token: |
|
cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32) |
|
pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1) |
|
|
|
return pos_emb |
|
|
|
|
|
|
|
class MAEViT(VisionTransformer): |
|
"""Vision Transformer for MAE pre-training. |
|
|
|
A PyTorch implement of: `An Image is Worth 16x16 Words: Transformers |
|
for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_ |
|
|
|
Args: |
|
arch (str | dict): Vision Transformer architecture |
|
Default: 'b' |
|
img_size (int | tuple): Input image size |
|
patch_size (int | tuple): The patch size |
|
out_indices (Sequence | int): Output from which stages. |
|
Defaults to -1, means the last stage. |
|
drop_rate (float): Probability of an element to be zeroed. |
|
Defaults to 0. |
|
drop_path_rate (float): stochastic depth rate. Defaults to 0. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Defaults to ``dict(type='LN')``. |
|
final_norm (bool): Whether to add a additional layer to normalize |
|
final feature map. Defaults to True. |
|
output_cls_token (bool): Whether output the cls_token. If set True, |
|
`with_cls_token` must be True. Defaults to True. |
|
interpolate_mode (str): Select the interpolate mode for position |
|
embeding vector resize. Defaults to "bicubic". |
|
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict. |
|
layer_cfgs (Sequence | dict): Configs of each transformer layer in |
|
encoder. Defaults to an empty dict. |
|
mask_ratio (bool): The ratio of total number of patches to be masked. |
|
Defaults to 0.75. |
|
init_cfg (dict, optional): Initialization config dict. |
|
Defaults to None. |
|
""" |
|
|
|
arch_zoo = { |
|
**dict.fromkeys( |
|
['mocov3-s', 'mocov3-small'], { |
|
'embed_dims': 384, |
|
'num_layers': 12, |
|
'num_heads': 12, |
|
'feedforward_channels': 1536, |
|
}), |
|
**dict.fromkeys( |
|
['b', 'base'], { |
|
'embed_dims': 768, |
|
'num_layers': 12, |
|
'num_heads': 12, |
|
'feedforward_channels': 3072 |
|
}), |
|
} |
|
|
|
|
|
|
|
def __init__(self, |
|
arch='b', |
|
img_size=224, |
|
patch_size=16, |
|
out_indices=-1, |
|
drop_rate=0, |
|
drop_path_rate=0, |
|
norm_cfg=dict(type='LN', eps=1e-6), |
|
final_norm=True, |
|
output_cls_token=False, |
|
interpolate_mode='bicubic', |
|
patch_cfg=dict(), |
|
layer_cfgs=dict(), |
|
gradientCKPT=False, |
|
mask_ratio=0.75, |
|
init_cfg=None): |
|
super().__init__( |
|
arch=arch, |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
out_indices=out_indices, |
|
drop_rate=drop_rate, |
|
drop_path_rate=drop_path_rate, |
|
norm_cfg=norm_cfg, |
|
final_norm=final_norm, |
|
output_cls_token=output_cls_token, |
|
interpolate_mode=interpolate_mode, |
|
patch_cfg=patch_cfg, |
|
layer_cfgs=layer_cfgs, |
|
init_cfg=init_cfg) |
|
self.gradientCKPT = gradientCKPT |
|
self.pos_embed.requires_grad = False |
|
self.mask_ratio = mask_ratio |
|
self.num_patches = self.patch_resolution[0] * self.patch_resolution[1] |
|
|
|
|
|
|
|
def init_weights(self): |
|
super(MAEViT, self).init_weights() |
|
if not (isinstance(self.init_cfg, dict) |
|
and self.init_cfg['type'] == 'Pretrained'): |
|
|
|
pos_embed = build_2d_sincos_position_embedding( |
|
self.patch_resolution, |
|
self.pos_embed.shape[-1], |
|
cls_token=True) |
|
self.pos_embed.data.copy_(pos_embed.float()) |
|
|
|
w = self.patch_embed.projection.weight.data |
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|
|
torch.nn.init.normal_(self.cls_token, std=.02) |
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _init_mask_embedding(self,m): |
|
if hasattr(m,'weight'): |
|
nn.init.constant_(m.weight,1.0) |
|
if hasattr(m, 'bias'): |
|
nn.init.constant_(m.bias,0) |
|
|
|
def _init_weights(self, m): |
|
|
|
if isinstance(m, nn.Linear): |
|
torch.nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def random_masking(self, x, mask_ratio=0.75, attn_mask=None): |
|
"""Generate the mask for MAE Pre-training. |
|
|
|
Args: |
|
x (torch.tensor): Image with data augmentation applied. |
|
mask_ratio (float): The mask ratio of total patches. |
|
Defaults to 0.75. |
|
|
|
Returns: |
|
tuple[Tensor, Tensor, Tensor]: masked image, mask and the ids |
|
to restore original image. |
|
|
|
- x_masked (Tensor): masked image. |
|
- mask (Tensor): mask used to mask image. |
|
- ids_restore (Tensor): ids to restore original image. |
|
""" |
|
N, L, D = x.shape |
|
len_keep = int(L * (1 - mask_ratio)) |
|
|
|
noise = torch.rand(N, L, device=x.device) |
|
|
|
|
|
ids_shuffle = torch.argsort( |
|
noise, dim=1) |
|
ids_restore = torch.argsort(ids_shuffle, dim=1) |
|
|
|
|
|
ids_keep = ids_shuffle[:, :len_keep] |
|
x_masked = torch.gather( |
|
x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) |
|
|
|
|
|
|
|
mask = torch.ones([N, L], device=x.device) |
|
mask[:, :len_keep] = 0 |
|
|
|
mask = torch.gather(mask, dim=1, index=ids_restore) |
|
|
|
return x_masked, mask, ids_restore |
|
|
|
def generate_mask(self, pixel_level_attn_mask): |
|
''' |
|
pixel_level_attn_mask: (0,1) attn mask with the same shape as img |
|
''' |
|
if pixel_level_attn_mask is None: return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_feat(self, img ,attn_mask=None): |
|
x, *_ = self.forward(img,attn_mask) |
|
if self.output_cls_token: |
|
return x[:,0,:] |
|
else: |
|
return torch.mean(x,dim=1) |
|
|
|
def forward(self, x, attn_mask=None): |
|
if attn_mask is not None: assert self.output_cls_token |
|
|
|
B = x.shape[0] |
|
x = self.patch_embed(x)[0] |
|
|
|
x = x + self.pos_embed[:, 1:1+x.shape[1], :] |
|
|
|
if True: |
|
assert self.mask_ratio == 0. |
|
else: |
|
x, mask, ids_restore = self.random_masking(x, self.mask_ratio) |
|
|
|
|
|
cls_token = self.cls_token + self.pos_embed[:, :1, :] |
|
cls_tokens = cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = self.drop_after_pos(x) |
|
|
|
|
|
|
|
for i, layer in enumerate(self.layers): |
|
if self.gradientCKPT: |
|
x = checkpoint(layer,x) |
|
else: |
|
x = layer(x) |
|
if i == len(self.layers) - 1 and self.final_norm: |
|
x = self.norm1(x) |
|
if True: |
|
return x |
|
else: |
|
return (x, mask, ids_restore) |
|
|
|
def forward_generator(self, x, attn_mask=None): |
|
if attn_mask is not None: assert self.output_cls_token |
|
|
|
B = x.shape[0] |
|
x = self.patch_embed(x)[0] |
|
|
|
x = x + self.pos_embed[:, 1:1+x.shape[1], :] |
|
|
|
|
|
cls_token = self.cls_token + self.pos_embed[:, :1, :] |
|
cls_tokens = cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = self.drop_after_pos(x) |
|
|
|
for i, layer in enumerate(self.layers): |
|
if self.gradientCKPT: |
|
x = checkpoint(layer,x) |
|
else: |
|
x = layer(x) |
|
|
|
if i == len(self.layers) - 1 and self.final_norm: |
|
x = self.norm1(x) |
|
|
|
x = x if (new_x:=(yield x)) is None else new_x |
|
|
|
debug = False |
|
if debug: |
|
print(f'layer {i}-th forwarded') |
|
|
|
|