nunonmg's picture
Update README.md
923de31
|
raw
history blame
6.11 kB
metadata
license: cc-by-nc-4.0
language:
  - en
  - de
  - fr
  - zh
  - pt
  - nl
  - ru
  - ko
  - it
  - es
metrics:
  - comet
pipeline_tag: translation

Model Card for Model ID

This modelcard aims to be a base template for new models. It has been generated using this raw template.

Model Details

Model Description

TowerInstruct is a language model that results from fine-tuning TowerBase on the TowerBricks supervised fine-tuning dataset. TowerInstruct v0.1 is the first model in the series. The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation. We will release more details in the upcoming technical report.

  • Developed by: Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay
  • Model type: A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions.
  • Language(s) (NLP): English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian
  • License: CC-BY-NC-4.0
  • Finetuned from model [optional]: TowerBase

Intended uses & limitations

The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset (TowerBricks), which contains a diverse range of data sources:

  • Translation
  • Automatic Post Edition
  • Machine Translation Evaluation
  • Context-aware Translation
  • Terminology-aware Translation
  • Multi-reference Translation
  • Named-entity Recognition
  • Paraphrase Generation
  • Synthetic Chat data
  • Code instructions

You can find the dataset and all data sources of TowerBricks here.

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]