TowerBase-7B-v0.1 / README.md
jmprcp's picture
open LLM leaderboard tags on readme
bd59c10 verified
---
license: cc-by-nc-4.0
language:
- en
- de
- fr
- zh
- pt
- nl
- ru
- ko
- it
- es
metrics:
- comet
pipeline_tag: translation
model-index:
- name: TowerBase-7B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 51.02
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Unbabel/TowerBase-7B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 77.68
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Unbabel/TowerBase-7B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Unbabel/TowerBase-7B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.29
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Unbabel/TowerBase-7B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.06
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Unbabel/TowerBase-7B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 13.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Unbabel/TowerBase-7B-v0.1
name: Open LLM Leaderboard
---
# Model Card for TowerBase-7B-v0.1
## Model Details
### Model Description
TowerBase-7B is a language model that results from continuing the pretraining of Llama 2 on a mix of 20 billion tokens of monolingual data in ten different languages — English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian — and bilingual data. TowerBase-7B-v0.1 is the first model in the series.
The resulting model shows improved performance on the supported languages, while maintaining Llama 2's capabilities on English. It is particularly well-suited for fine-tuning on translation and related tasks: check out [TowerInstruct](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1).
We will release more details in the upcoming technical report.
- **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay
- **Model type:** A 7B parameter model built on top of Llama 2 by continuing pretraining on multilingual data.
- **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian
- **License:** CC-BY-NC-4.0, Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
## Intended uses & limitations
The model is intended for research purposes in the 10 languages it supports.
The model is able to perform well on translation and related tasks (e.g., APE, GEC) on a few-shot regime.
It can also be fine-tuned to perform these tasks in a zero-shot fashion (see [TowerInstruct](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1), as well as other multilingual tasks.
### Out-of-Scope Use
The model is not guaranteed to perform well for languages other than the 10 languages it supports.
## Bias, Risks, and Limitations
TowerBase-v0.1 has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements).
## Run the model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "Unbabel/TowerBase-7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "English: My name is TowerBase.\nPortuguese:"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Training Data
Filtered versions of [mc4](https://huggingface.co/datasets/mc4) and bilingual data from various sources (e.g., [OPUS](https://opus.nlpl.eu/)).
## Citation
```bibtex
@misc{tower_llm_2024,
title={Tower: An Open Multilingual Large Language Model for Translation-Related Tasks},
author={Duarte M. Alves and José Pombal and Nuno M. Guerreiro and Pedro H. Martins and João Alves and Amin Farajian and Ben Peters and Ricardo Rei and Patrick Fernandes and Sweta Agrawal and Pierre Colombo and José G. C. de Souza and André F. T. Martins},
year={2024},
eprint={2402.17733},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```