Commit
·
c0e1178
1
Parent(s):
2213291
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- govreport-summarization
|
6 |
+
model-index:
|
7 |
+
- name: Pegasus-x-base-govreport-12288-1024-numepoch-5
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# Pegasus-x-base-govreport-12288-1024-numepoch-5
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the govreport-summarization dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.6740
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 1
|
39 |
+
- eval_batch_size: 2
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 64
|
42 |
+
- total_train_batch_size: 64
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 5
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
+
| 3.0173 | 0.07 | 20 | 2.6677 |
|
52 |
+
| 2.5674 | 0.15 | 40 | 2.2993 |
|
53 |
+
| 2.3013 | 0.22 | 60 | 2.1024 |
|
54 |
+
| 2.2145 | 0.29 | 80 | 1.9833 |
|
55 |
+
| 2.1191 | 0.37 | 100 | 1.9383 |
|
56 |
+
| 2.0709 | 0.44 | 120 | 1.8815 |
|
57 |
+
| 2.0287 | 0.51 | 140 | 1.8623 |
|
58 |
+
| 2.003 | 0.58 | 160 | 1.8467 |
|
59 |
+
| 1.9842 | 0.66 | 180 | 1.8314 |
|
60 |
+
| 1.9603 | 0.73 | 200 | 1.8307 |
|
61 |
+
| 1.9493 | 0.8 | 220 | 1.8157 |
|
62 |
+
| 1.9631 | 0.88 | 240 | 1.7919 |
|
63 |
+
| 1.9332 | 0.95 | 260 | 1.7919 |
|
64 |
+
| 1.9123 | 1.02 | 280 | 1.7836 |
|
65 |
+
| 1.887 | 1.1 | 300 | 1.7672 |
|
66 |
+
| 1.8743 | 1.17 | 320 | 1.7629 |
|
67 |
+
| 1.8412 | 1.24 | 340 | 1.7566 |
|
68 |
+
| 1.8508 | 1.32 | 360 | 1.7410 |
|
69 |
+
| 1.8564 | 1.39 | 380 | 1.7403 |
|
70 |
+
| 1.8686 | 1.46 | 400 | 1.7393 |
|
71 |
+
| 1.8881 | 1.53 | 420 | 1.7420 |
|
72 |
+
| 1.8629 | 1.61 | 440 | 1.7367 |
|
73 |
+
| 1.8683 | 1.68 | 460 | 1.7288 |
|
74 |
+
| 1.833 | 1.75 | 480 | 1.7300 |
|
75 |
+
| 1.8621 | 1.83 | 500 | 1.7208 |
|
76 |
+
| 1.8622 | 1.9 | 520 | 1.7211 |
|
77 |
+
| 1.8147 | 1.97 | 540 | 1.7158 |
|
78 |
+
| 1.8161 | 2.05 | 560 | 1.7117 |
|
79 |
+
| 1.8239 | 2.12 | 580 | 1.7090 |
|
80 |
+
| 1.8185 | 2.19 | 600 | 1.7100 |
|
81 |
+
| 1.8605 | 2.27 | 620 | 1.7057 |
|
82 |
+
| 1.7919 | 2.34 | 640 | 1.6996 |
|
83 |
+
| 1.8026 | 2.41 | 660 | 1.7012 |
|
84 |
+
| 1.7785 | 2.48 | 680 | 1.6980 |
|
85 |
+
| 1.8296 | 2.56 | 700 | 1.6941 |
|
86 |
+
| 1.802 | 2.63 | 720 | 1.6944 |
|
87 |
+
| 1.7783 | 2.7 | 740 | 1.6927 |
|
88 |
+
| 1.7998 | 2.78 | 760 | 1.6922 |
|
89 |
+
| 1.8128 | 2.85 | 780 | 1.6890 |
|
90 |
+
| 1.7762 | 2.92 | 800 | 1.6909 |
|
91 |
+
| 1.7631 | 3.0 | 820 | 1.6959 |
|
92 |
+
| 1.8191 | 3.07 | 840 | 1.6823 |
|
93 |
+
| 1.795 | 3.14 | 860 | 1.6873 |
|
94 |
+
| 1.7587 | 3.22 | 880 | 1.6850 |
|
95 |
+
| 1.8091 | 3.29 | 900 | 1.6828 |
|
96 |
+
| 1.7617 | 3.36 | 920 | 1.6860 |
|
97 |
+
| 1.7933 | 3.43 | 940 | 1.6796 |
|
98 |
+
| 1.8041 | 3.51 | 960 | 1.6805 |
|
99 |
+
| 1.7596 | 3.58 | 980 | 1.6855 |
|
100 |
+
| 1.7518 | 3.65 | 1000 | 1.6791 |
|
101 |
+
| 1.7384 | 3.73 | 1020 | 1.6795 |
|
102 |
+
| 1.7855 | 3.8 | 1040 | 1.6784 |
|
103 |
+
| 1.7938 | 3.87 | 1060 | 1.6780 |
|
104 |
+
| 1.7637 | 3.95 | 1080 | 1.6809 |
|
105 |
+
| 1.7914 | 4.02 | 1100 | 1.6779 |
|
106 |
+
| 1.7903 | 4.09 | 1120 | 1.6753 |
|
107 |
+
| 1.7874 | 4.17 | 1140 | 1.6745 |
|
108 |
+
| 1.7982 | 4.24 | 1160 | 1.6728 |
|
109 |
+
| 1.7709 | 4.31 | 1180 | 1.6761 |
|
110 |
+
| 1.7583 | 4.38 | 1200 | 1.6754 |
|
111 |
+
| 1.778 | 4.46 | 1220 | 1.6739 |
|
112 |
+
| 1.7526 | 4.53 | 1240 | 1.6746 |
|
113 |
+
| 1.7713 | 4.6 | 1260 | 1.6723 |
|
114 |
+
| 1.734 | 4.68 | 1280 | 1.6742 |
|
115 |
+
| 1.7498 | 4.75 | 1300 | 1.6737 |
|
116 |
+
| 1.751 | 4.82 | 1320 | 1.6730 |
|
117 |
+
| 1.7562 | 4.9 | 1340 | 1.6739 |
|
118 |
+
| 1.7549 | 4.97 | 1360 | 1.6740 |
|
119 |
+
|
120 |
+
|
121 |
+
### Framework versions
|
122 |
+
|
123 |
+
- Transformers 4.30.2
|
124 |
+
- Pytorch 2.0.1+cu117
|
125 |
+
- Datasets 2.13.1
|
126 |
+
- Tokenizers 0.13.3
|