|
import math |
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import Optimizer |
|
from typing import List, Optional |
|
|
|
__all__ = ['RAdam', 'radam'] |
|
|
|
class RAdam(Optimizer): |
|
r"""Implements RAdam algorithm. |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \gamma \text{ (lr)}, \: \beta_1, \beta_2 |
|
\text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \: |
|
\lambda \text{ (weightdecay)}, \\ |
|
&\hspace{13mm} \epsilon \text{ (epsilon)} \\ |
|
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, |
|
v_0 \leftarrow 0 \text{ ( second moment)}, \\ |
|
&\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1 \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{6mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\ |
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{6mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ |
|
&\hspace{6mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ |
|
&\hspace{6mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ |
|
&\hspace{6mm}\rho_t \leftarrow \rho_{\infty} - |
|
2 t \beta^t_2 /\big(1-\beta_2^t \big) \\[0.1.ex] |
|
&\hspace{6mm}\textbf{if} \: \rho_t > 5 \\ |
|
&\hspace{12mm} l_t \leftarrow \sqrt{ (1-\beta^t_2) / \big( v_t +\epsilon \big) } \\ |
|
&\hspace{12mm} r_t \leftarrow |
|
\sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\ |
|
&\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t} r_t l_t \\ |
|
&\hspace{6mm}\textbf{else} \\ |
|
&\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t} \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_. |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
foreach (bool, optional): whether foreach implementation of optimizer |
|
is used (default: None) |
|
|
|
.. _On the variance of the adaptive learning rate and beyond: |
|
https://arxiv.org/abs/1908.03265 |
|
""" |
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, |
|
weight_decay=0, foreach: Optional[bool] = None): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
if not 0.0 <= weight_decay: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, |
|
foreach=foreach) |
|
super(RAdam, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('foreach', None) |
|
state_values = list(self.state.values()) |
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step']) |
|
if not step_is_tensor: |
|
for s in state_values: |
|
s['step'] = torch.tensor(float(s['step'])) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
grads = [] |
|
exp_avgs = [] |
|
exp_avg_sqs = [] |
|
state_steps = [] |
|
beta1, beta2 = group['betas'] |
|
|
|
for p in group['params']: |
|
if p.grad is not None: |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError('RAdam does not support sparse gradients') |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state['step'] = torch.tensor(0.) |
|
|
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
exp_avgs.append(state['exp_avg']) |
|
exp_avg_sqs.append(state['exp_avg_sq']) |
|
state_steps.append(state['step']) |
|
|
|
radam(params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
state_steps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=group['lr'], |
|
weight_decay=group['weight_decay'], |
|
eps=group['eps'], |
|
foreach=group['foreach']) |
|
|
|
return loss |
|
|
|
|
|
def radam(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
state_steps: List[Tensor], |
|
|
|
|
|
foreach: bool = None, |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
eps: float): |
|
r"""Functional API that performs RAdam algorithm computation. |
|
|
|
See :class:`~torch.optim.RAdam` for details. |
|
""" |
|
|
|
if not all(isinstance(t, torch.Tensor) for t in state_steps): |
|
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors") |
|
|
|
if foreach is None: |
|
|
|
foreach = False |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError('torch.jit.script not supported with foreach optimizers') |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_radam |
|
else: |
|
func = _single_tensor_radam |
|
|
|
func(params, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
state_steps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
eps=eps) |
|
|
|
|
|
def _single_tensor_radam(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
eps: float): |
|
|
|
for i, param in enumerate(params): |
|
grad = grads[i] |
|
exp_avg = exp_avgs[i] |
|
exp_avg_sq = exp_avg_sqs[i] |
|
step_t = state_steps[i] |
|
|
|
step_t += 1 |
|
step = step_t.item() |
|
|
|
bias_correction1 = 1 - beta1 ** step |
|
bias_correction2 = 1 - beta2 ** step |
|
|
|
if weight_decay != 0: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
|
|
|
|
bias_corrected_exp_avg = exp_avg / bias_correction1 |
|
|
|
|
|
rho_inf = 2 / (1 - beta2) - 1 |
|
|
|
rho_t = rho_inf - 2 * step * (beta2 ** step) / bias_correction2 |
|
|
|
if rho_t > 5.: |
|
|
|
rect = math.sqrt((rho_t - 4) * (rho_t - 2) * rho_inf / ((rho_inf - 4) * (rho_inf - 2) * rho_t)) |
|
adaptive_lr = math.sqrt(bias_correction2) / exp_avg_sq.sqrt().add_(eps) |
|
|
|
param.add_(bias_corrected_exp_avg * lr * adaptive_lr * rect, alpha=-1.0) |
|
else: |
|
param.add_(bias_corrected_exp_avg * lr, alpha=-1.0) |
|
|
|
|
|
def _multi_tensor_radam(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
eps: float): |
|
|
|
if len(params) == 0: |
|
return |
|
|
|
|
|
torch._foreach_add_(state_steps, 1) |
|
|
|
|
|
rho_inf = 2 / (1 - beta2) - 1 |
|
|
|
rho_t_list = [rho_inf - 2 * step.item() * (beta2 ** step.item()) / (1 - beta2 ** step.item()) for step in state_steps] |
|
|
|
bias_correction1 = [1 - beta1 ** step.item() for step in state_steps] |
|
bias_correction2 = [1 - beta2 ** step.item() for step in state_steps] |
|
if weight_decay != 0: |
|
torch._foreach_add_(grads, params, alpha=weight_decay) |
|
|
|
|
|
torch._foreach_mul_(exp_avgs, beta1) |
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) |
|
|
|
torch._foreach_mul_(exp_avg_sqs, beta2) |
|
torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2) |
|
|
|
rect = [math.sqrt((rho_t - 4) * (rho_t - 2) * rho_inf / ((rho_inf - 4) * (rho_inf - 2) * rho_t)) |
|
if rho_t > 5 else 0 for rho_t in rho_t_list] |
|
unrectified = [0 if rect > 0 else 1. for rect in rect] |
|
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs) |
|
bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2] |
|
denom = torch._foreach_div(exp_avg_sq_sqrt, bias_correction_sqrt) |
|
step_size = [(lr * rect / bc) * -1 for rect, bc in zip(rect, bias_correction1)] |
|
torch._foreach_addcdiv_(params, exp_avgs, denom, step_size) |
|
|
|
denom = [torch.ones_like(exp_av, memory_format=torch.preserve_format) for exp_av in exp_avgs] |
|
step_size = [(lr * rect / bc) * -1 for rect, bc in zip(unrectified, bias_correction1)] |
|
torch._foreach_addcdiv_(params, exp_avgs, denom, step_size) |
|
|