|
from torch import Tensor |
|
from torch.types import _size, _dtype |
|
from typing import Any, Optional, Tuple, Dict, List, Callable, Sequence, Union |
|
from .common_types import _ratio_any_t, _size_any_t, _size_1_t, _size_2_t, _size_3_t, _size_2_opt_t, _size_3_opt_t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int] |
|
GRID_SAMPLE_PADDING_MODES = Dict[str, int] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fractional_max_pool2d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ..., |
|
output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ..., |
|
_random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ... |
|
|
|
|
|
def fractional_max_pool3d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ..., |
|
output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ..., |
|
_random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ... |
|
|
|
|
|
def max_pool1d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ..., |
|
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[ |
|
Tensor, Tensor]: ... |
|
|
|
|
|
def max_pool2d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ..., |
|
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[ |
|
Tensor, Tensor]: ... |
|
|
|
|
|
def max_pool3d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ..., |
|
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[ |
|
Tensor, Tensor]: ... |
|
|
|
|
|
def max_unpool1d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ..., |
|
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ... |
|
|
|
|
|
def max_unpool2d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ..., |
|
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ... |
|
|
|
|
|
def max_unpool3d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ..., |
|
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ... |
|
|
|
|
|
def lp_pool1d(input: Tensor, norm_type: float, kernel_size: _size_1_t, stride: Union[Optional[_size], Optional[int]] = ..., |
|
ceil_mode: bool = ...) -> Tensor: ... |
|
|
|
|
|
def lp_pool2d(input: Tensor, norm_type: float, kernel_size: _size_2_t, stride: Union[Optional[_size], Optional[int]] = ..., |
|
ceil_mode: bool = ...) -> Tensor: ... |
|
|
|
|
|
def adaptive_max_pool1d_with_indices(input: Tensor, output_size: _size, return_indices: bool = ...) -> Tuple[ |
|
Tensor, Tensor]: ... |
|
|
|
|
|
def adaptive_max_pool2d_with_indices(input: Tensor, output_size: _size_2_opt_t, return_indices: bool = ...) -> Tuple[ |
|
Tensor, Tensor]: ... |
|
|
|
|
|
def adaptive_max_pool3d_with_indices(input: Tensor, output_size: _size_3_opt_t, return_indices: bool = ...) -> Tuple[ |
|
Tensor, Tensor]: ... |
|
|
|
|
|
def adaptive_avg_pool1d(input: Tensor, output_size: _size_1_t) -> Tensor: ... |
|
|
|
|
|
def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ... |
|
|
|
|
|
def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ... |
|
|
|
|
|
def dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def dropout1d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def dropout2d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def dropout3d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def feature_alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def threshold(input: Tensor, threshold: float, value: float, inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def relu(input: Tensor, inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def glu(input: Tensor, dim: int = ...) -> Tensor: ... |
|
|
|
|
|
def hardtanh(input: Tensor, min_val: float = ..., max_val: float = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def selu(input: Tensor, inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def leaky_relu(input: Tensor, negative_slope: float = ..., inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def prelu(input: Tensor, weight: Tensor) -> Tensor: ... |
|
|
|
|
|
def rrelu(input: Tensor, lower: float = ..., upper: float = ..., training: bool = ..., |
|
inplace: bool = ...) -> Tensor: ... |
|
|
|
|
|
def gelu(input: Any, approximate: str = ...): ... |
|
|
|
|
|
def hardshrink(input: Tensor, lambd: float = ...) -> Tensor: ... |
|
|
|
|
|
def tanhshrink(input: Any): ... |
|
|
|
|
|
def softsign(input: Any): ... |
|
|
|
|
|
def softmin(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ... |
|
|
|
|
|
def softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ... |
|
|
|
|
|
def gumbel_softmax(logits: Tensor, tau: float = ..., hard: bool = ..., eps: float = ..., dim: int = ...) -> Tensor: ... |
|
|
|
|
|
def log_softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., |
|
dtype: Optional[_dtype] = ...) -> Tensor: ... |
|
|
|
|
|
def tanh(input: Any): ... |
|
|
|
|
|
def sigmoid(input: Any) -> Tensor: ... |
|
|
|
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ... |
|
|
|
|
|
def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ... |
|
|
|
|
|
def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ... |
|
|
|
|
|
def silu(input: Tensor, inplace: bool = False) -> Tensor: ... |
|
|
|
def mish(input: Tensor, inplace: bool = False) -> Tensor: ... |
|
|
|
def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ... |
|
|
|
|
|
def embedding(input: Tensor, weight: Tensor, padding_idx: Optional[int] = ..., max_norm: Optional[float] = ..., |
|
norm_type: float = ..., scale_grad_by_freq: bool = ..., sparse: bool = ...) -> Tensor: ... |
|
|
|
|
|
def embedding_bag(input: Tensor, weight: Tensor, offsets: Optional[Tensor] = ..., max_norm: Optional[float] = ..., |
|
norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ..., |
|
sparse: bool = ..., per_sample_weights: Optional[Tensor] = ..., |
|
include_last_offset: bool = ..., padding_idx: Optional[int] = ...) -> Tensor: ... |
|
|
|
def batch_norm(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], |
|
weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., training: bool = ..., |
|
momentum: float = ..., eps: float = ...) -> Tensor: ... |
|
|
|
|
|
def instance_norm(input: Tensor, running_mean: Optional[Tensor] = ..., running_var: Optional[Tensor] = ..., |
|
weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., use_input_stats: bool = ..., |
|
momentum: float = ..., eps: float = ...) -> Tensor: ... |
|
|
|
|
|
def layer_norm(input: Tensor, normalized_shape: Sequence[int], weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., |
|
eps: float = ...) -> Tensor: ... |
|
|
|
|
|
def group_norm(input: Tensor, num_groups: int, weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., |
|
eps: float = ...) -> Tensor: ... |
|
|
|
|
|
def local_response_norm(input: Tensor, size: int, alpha: float = ..., beta: float = ..., k: float = ...) -> Tensor: ... |
|
|
|
|
|
def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: int = ..., |
|
reduction: str = ..., zero_infinity: bool = ...) -> Tensor: ... |
|
|
|
|
|
def nll_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ..., |
|
ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def poisson_nll_loss(input: Tensor, target: Tensor, log_input: bool = ..., full: bool = ..., |
|
size_average: Optional[bool] = ..., eps: float = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def gaussian_nll_loss(input: Tensor, target: Tensor, var: Tensor, full: Optional[bool] = ..., |
|
eps: Optional[float] = ..., reduction: Optional[str] = ...) -> Tensor: ... |
|
|
|
|
|
def kl_div(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ..., log_target: bool = ...) -> Tensor: ... |
|
|
|
|
|
def cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ..., |
|
ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ..., |
|
label_smoothing: float = ...) -> Tensor: ... |
|
|
|
|
|
def binary_cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., |
|
size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def binary_cross_entropy_with_logits(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., |
|
size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ..., pos_weight: Optional[Tensor] = ...) -> Tensor: ... |
|
|
|
|
|
def smooth_l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ..., beta: float = ...) -> Tensor: ... |
|
|
|
|
|
def huber_loss(input: Tensor, target: Tensor, reduction: str = ..., delta: float = ...) -> Tensor: ... |
|
|
|
|
|
def l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def mse_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def margin_ranking_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ..., |
|
size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def hinge_embedding_loss(input: Tensor, target: Tensor, margin: float = ..., size_average: Optional[bool] = ..., |
|
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def multilabel_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., |
|
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def soft_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def multilabel_soft_margin_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., |
|
size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def cosine_embedding_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ..., |
|
size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def multi_margin_loss(input: Tensor, target: Tensor, p: int = ..., margin: float = ..., weight: Optional[Tensor] = ..., |
|
size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., |
|
reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def upsample(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ..., |
|
align_corners: Optional[Any] = ...): ... |
|
|
|
|
|
def interpolate(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ..., |
|
align_corners: Optional[Any] = ..., recompute_scale_factor: Optional[Any] = ..., |
|
antialias: bool = ...): ... |
|
|
|
|
|
def upsample_nearest(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ... |
|
|
|
|
|
def upsample_bilinear(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ... |
|
|
|
|
|
def grid_sample(input: Tensor, grid: Tensor, mode: str = ..., padding_mode: str = ..., |
|
align_corners: Optional[Any] = ...) -> Tensor: ... |
|
|
|
|
|
def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[Any] = ...) -> Tensor: ... |
|
|
|
|
|
def pad(input: Tensor, pad: Sequence[int], mode: str = ..., value: float = ...) -> Tensor: ... |
|
|
|
|
|
def pairwise_distance(x1: Tensor, x2: Tensor, p: float = ..., eps: float = ..., keepdim: bool = ...) -> Tensor: ... |
|
|
|
|
|
def triplet_margin_loss(anchor: Tensor, positive: Tensor, negative: Tensor, margin: float = ..., p: float = ..., |
|
eps: float = ..., swap: bool = ..., size_average: Optional[bool] = ..., |
|
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ... |
|
|
|
|
|
def triplet_margin_with_distance_loss(anchor: Tensor, positive: Tensor, negative: Tensor, *, |
|
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]]=..., |
|
margin: float=..., swap: bool=..., reduction: str=...) -> Tensor: ... |
|
|
|
|
|
def normalize(input: Tensor, p: float = ..., dim: int = ..., eps: float = ..., |
|
out: Optional[Tensor] = ...) -> Tensor: ... |
|
|
|
|
|
def assert_int_or_pair(arg: Any, arg_name: Any, message: Any) -> None: ... |
|
|
|
|
|
def unfold(input: Tensor, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ..., |
|
stride: _size_any_t = ...) -> Tensor: ... |
|
|
|
|
|
def fold(input: Tensor, output_size: _size_any_t, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ..., |
|
stride: _size_any_t = ...) -> Tensor: ... |
|
|
|
|
|
def multi_head_attention_forward(query: Tensor, |
|
key: Tensor, |
|
value: Tensor, |
|
embed_dim_to_check: int, |
|
num_heads: int, |
|
in_proj_weight: Optional[Tensor], |
|
in_proj_bias: Optional[Tensor], |
|
bias_k: Optional[Tensor], |
|
bias_v: Optional[Tensor], |
|
add_zero_attn: bool, |
|
dropout_p: float, |
|
out_proj_weight: Tensor, |
|
out_proj_bias: Optional[Tensor], |
|
training: bool = True, |
|
key_padding_mask: Optional[Tensor] = None, |
|
need_weights: bool = True, |
|
attn_mask: Optional[Tensor] = None, |
|
use_separate_proj_weight: bool = False, |
|
q_proj_weight: Optional[Tensor] = None, |
|
k_proj_weight: Optional[Tensor] = None, |
|
v_proj_weight: Optional[Tensor] = None, |
|
static_k: Optional[Tensor] = None, |
|
static_v: Optional[Tensor] = None, |
|
average_attn_weights: bool = True |
|
) -> Tuple[Tensor, Optional[Tensor]]: ... |
|
|
|
|
|
from .. import conv1d as conv1d |
|
from .. import conv2d as conv2d |
|
from .. import conv3d as conv3d |
|
from .. import conv_transpose1d as conv_transpose1d |
|
from .. import conv_transpose2d as conv_transpose2d |
|
from .. import conv_transpose3d as conv_transpose3d |
|
from .. import conv_tbc as conv_tbc |
|
from .. import avg_pool1d as avg_pool1d |
|
from .. import relu_ as relu_ |
|
from .. import selu_ as selu_ |
|
from .. import celu_ as celu_ |
|
from .. import rrelu_ as rrelu_ |
|
from .. import pixel_shuffle as pixel_shuffle |
|
from .. import pixel_unshuffle as pixel_unshuffle |
|
from .. import channel_shuffle as channel_shuffle |
|
from .. import native_channel_shuffle as native_channel_shuffle |
|
from .. import pdist as pdist |
|
from .. import cosine_similarity as cosine_similarity |
|
|
|
fractional_max_pool2d: Callable |
|
fractional_max_pool3d: Callable |
|
max_pool1d: Callable |
|
max_pool2d: Callable |
|
max_pool3d: Callable |
|
adaptive_max_pool1d: Callable |
|
adaptive_max_pool2d: Callable |
|
adaptive_max_pool3d: Callable |
|
avg_pool2d: Callable |
|
avg_pool3d: Callable |
|
hardtanh_: Callable |
|
elu_: Callable |
|
leaky_relu_: Callable |
|
logsigmoid: Callable |
|
softplus: Callable |
|
softshrink: Callable |
|
one_hot: Callable |
|
|