phlippseitz's picture
Upload README.md with huggingface_hub
6288dec
|
raw
history blame
2.24 kB
---
inference: false
tags:
- onnx
- question-answering
- bert
- adapter-transformers
datasets:
- drop
language:
- en
---
# ONNX export of Adapter `AdapterHub/bert-base-uncased-pf-drop` for bert-base-uncased
## Conversion of [AdapterHub/bert-base-uncased-pf-drop](https://huggingface.co/AdapterHub/bert-base-uncased-pf-drop) for UKP SQuARE
## Usage
```python
onnx_path = hf_hub_download(repo_id='UKP-SQuARE/bert-base-uncased-pf-drop-onnx', filename='model.onnx') # or model_quant.onnx for quantization
onnx_model = InferenceSession(onnx_path, providers=['CPUExecutionProvider'])
context = 'ONNX is an open format to represent models. The benefits of using ONNX include interoperability of frameworks and hardware optimization.'
question = 'What are advantages of ONNX?'
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
inputs = tokenizer(question, context, padding=True, truncation=True, return_tensors='np')
inputs_int64 = {key: np.array(inputs[key], dtype=np.int64) for key in inputs}
outputs = onnx_model.run(input_feed=dict(inputs_int64), output_names=None)
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-pre,
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
author = {Poth, Clifton and
Pfeiffer, Jonas and
R{"u}ckl{'e}, Andreas and
Gurevych, Iryna},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.827",
pages = "10585--10605",
}
```