|
import torch |
|
|
|
|
|
class TriangularCausalMask(): |
|
def __init__(self, B, L, device="cpu"): |
|
mask_shape = [B, 1, L, L] |
|
with torch.no_grad(): |
|
self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device) |
|
|
|
@property |
|
def mask(self): |
|
return self._mask |
|
|
|
|
|
class ProbMask(): |
|
def __init__(self, B, H, L, index, scores, device="cpu"): |
|
_mask = torch.ones(L, scores.shape[-1], dtype=torch.bool).to(device).triu(1) |
|
_mask_ex = _mask[None, None, :].expand(B, H, L, scores.shape[-1]) |
|
indicator = _mask_ex[torch.arange(B)[:, None, None], |
|
torch.arange(H)[None, :, None], |
|
index, :].to(device) |
|
self._mask = indicator.view(scores.shape).to(device) |
|
|
|
@property |
|
def mask(self): |
|
return self._mask |
|
|