|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from collections import OrderedDict |
|
|
|
class _SimpleSegmentationModel(nn.Module): |
|
def __init__(self, backbone, classifier): |
|
super(_SimpleSegmentationModel, self).__init__() |
|
self.backbone = backbone |
|
self.classifier = classifier |
|
|
|
def forward(self, x): |
|
input_shape = x.shape[-2:] |
|
features = self.backbone(x) |
|
x = self.classifier(features) |
|
x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=False) |
|
return x |
|
|
|
|
|
class IntermediateLayerGetter(nn.ModuleDict): |
|
""" |
|
Module wrapper that returns intermediate layers from a model |
|
|
|
It has a strong assumption that the modules have been registered |
|
into the model in the same order as they are used. |
|
This means that one should **not** reuse the same nn.Module |
|
twice in the forward if you want this to work. |
|
|
|
Additionally, it is only able to query submodules that are directly |
|
assigned to the model. So if `model` is passed, `model.feature1` can |
|
be returned, but not `model.feature1.layer2`. |
|
|
|
Arguments: |
|
model (nn.Module): model on which we will extract the features |
|
return_layers (Dict[name, new_name]): a dict containing the names |
|
of the modules for which the activations will be returned as |
|
the key of the dict, and the value of the dict is the name |
|
of the returned activation (which the user can specify). |
|
|
|
Examples:: |
|
|
|
>>> m = torchvision.models.resnet18(pretrained=True) |
|
>>> # extract layer1 and layer3, giving as names `feat1` and feat2` |
|
>>> new_m = torchvision.models._utils.IntermediateLayerGetter(m, |
|
>>> {'layer1': 'feat1', 'layer3': 'feat2'}) |
|
>>> out = new_m(torch.rand(1, 3, 224, 224)) |
|
>>> print([(k, v.shape) for k, v in out.items()]) |
|
>>> [('feat1', torch.Size([1, 64, 56, 56])), |
|
>>> ('feat2', torch.Size([1, 256, 14, 14]))] |
|
""" |
|
def __init__(self, model, return_layers, hrnet_flag=False): |
|
if not set(return_layers).issubset([name for name, _ in model.named_children()]): |
|
raise ValueError("return_layers are not present in model") |
|
|
|
self.hrnet_flag = hrnet_flag |
|
|
|
orig_return_layers = return_layers |
|
return_layers = {k: v for k, v in return_layers.items()} |
|
layers = OrderedDict() |
|
for name, module in model.named_children(): |
|
layers[name] = module |
|
if name in return_layers: |
|
del return_layers[name] |
|
if not return_layers: |
|
break |
|
|
|
super(IntermediateLayerGetter, self).__init__(layers) |
|
self.return_layers = orig_return_layers |
|
|
|
def forward(self, x): |
|
out = OrderedDict() |
|
for name, module in self.named_children(): |
|
if self.hrnet_flag and name.startswith('transition'): |
|
if name == 'transition1': |
|
x = [trans(x) for trans in module] |
|
else: |
|
x.append(module(x[-1])) |
|
else: |
|
x = module(x) |
|
|
|
if name in self.return_layers: |
|
out_name = self.return_layers[name] |
|
if name == 'stage4' and self.hrnet_flag: |
|
output_h, output_w = x[0].size(2), x[0].size(3) |
|
x1 = F.interpolate(x[1], size=(output_h, output_w), mode='bilinear', align_corners=False) |
|
x2 = F.interpolate(x[2], size=(output_h, output_w), mode='bilinear', align_corners=False) |
|
x3 = F.interpolate(x[3], size=(output_h, output_w), mode='bilinear', align_corners=False) |
|
x = torch.cat([x[0], x1, x2, x3], dim=1) |
|
out[out_name] = x |
|
else: |
|
out[out_name] = x |
|
return out |
|
|