|
import json |
|
import os |
|
from collections import namedtuple |
|
|
|
import torch |
|
import torch.utils.data as data |
|
from PIL import Image |
|
import numpy as np |
|
|
|
|
|
class Cityscapes(data.Dataset): |
|
"""Cityscapes <http://www.cityscapes-dataset.com/> Dataset. |
|
|
|
**Parameters:** |
|
- **root** (string): Root directory of dataset where directory 'leftImg8bit' and 'gtFine' or 'gtCoarse' are located. |
|
- **split** (string, optional): The image split to use, 'train', 'test' or 'val' if mode="gtFine" otherwise 'train', 'train_extra' or 'val' |
|
- **mode** (string, optional): The quality mode to use, 'gtFine' or 'gtCoarse' or 'color'. Can also be a list to output a tuple with all specified target types. |
|
- **transform** (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` |
|
- **target_transform** (callable, optional): A function/transform that takes in the target and transforms it. |
|
""" |
|
|
|
|
|
CityscapesClass = namedtuple('CityscapesClass', ['name', 'id', 'train_id', 'category', 'category_id', |
|
'has_instances', 'ignore_in_eval', 'color']) |
|
classes = [ |
|
CityscapesClass('unlabeled', 0, 255, 'void', 0, False, True, (0, 0, 0)), |
|
CityscapesClass('ego vehicle', 1, 255, 'void', 0, False, True, (0, 0, 0)), |
|
CityscapesClass('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)), |
|
CityscapesClass('out of roi', 3, 255, 'void', 0, False, True, (0, 0, 0)), |
|
CityscapesClass('static', 4, 255, 'void', 0, False, True, (0, 0, 0)), |
|
CityscapesClass('dynamic', 5, 255, 'void', 0, False, True, (111, 74, 0)), |
|
CityscapesClass('ground', 6, 255, 'void', 0, False, True, (81, 0, 81)), |
|
CityscapesClass('road', 7, 0, 'flat', 1, False, False, (128, 64, 128)), |
|
CityscapesClass('sidewalk', 8, 1, 'flat', 1, False, False, (244, 35, 232)), |
|
CityscapesClass('parking', 9, 255, 'flat', 1, False, True, (250, 170, 160)), |
|
CityscapesClass('rail track', 10, 255, 'flat', 1, False, True, (230, 150, 140)), |
|
CityscapesClass('building', 11, 2, 'construction', 2, False, False, (70, 70, 70)), |
|
CityscapesClass('wall', 12, 3, 'construction', 2, False, False, (102, 102, 156)), |
|
CityscapesClass('fence', 13, 4, 'construction', 2, False, False, (190, 153, 153)), |
|
CityscapesClass('guard rail', 14, 255, 'construction', 2, False, True, (180, 165, 180)), |
|
CityscapesClass('bridge', 15, 255, 'construction', 2, False, True, (150, 100, 100)), |
|
CityscapesClass('tunnel', 16, 255, 'construction', 2, False, True, (150, 120, 90)), |
|
CityscapesClass('pole', 17, 5, 'object', 3, False, False, (153, 153, 153)), |
|
CityscapesClass('polegroup', 18, 255, 'object', 3, False, True, (153, 153, 153)), |
|
CityscapesClass('traffic light', 19, 6, 'object', 3, False, False, (250, 170, 30)), |
|
CityscapesClass('traffic sign', 20, 7, 'object', 3, False, False, (220, 220, 0)), |
|
CityscapesClass('vegetation', 21, 8, 'nature', 4, False, False, (107, 142, 35)), |
|
CityscapesClass('terrain', 22, 9, 'nature', 4, False, False, (152, 251, 152)), |
|
CityscapesClass('sky', 23, 10, 'sky', 5, False, False, (70, 130, 180)), |
|
CityscapesClass('person', 24, 11, 'human', 6, True, False, (220, 20, 60)), |
|
CityscapesClass('rider', 25, 12, 'human', 6, True, False, (255, 0, 0)), |
|
CityscapesClass('car', 26, 13, 'vehicle', 7, True, False, (0, 0, 142)), |
|
CityscapesClass('truck', 27, 14, 'vehicle', 7, True, False, (0, 0, 70)), |
|
CityscapesClass('bus', 28, 15, 'vehicle', 7, True, False, (0, 60, 100)), |
|
CityscapesClass('caravan', 29, 255, 'vehicle', 7, True, True, (0, 0, 90)), |
|
CityscapesClass('trailer', 30, 255, 'vehicle', 7, True, True, (0, 0, 110)), |
|
CityscapesClass('train', 31, 16, 'vehicle', 7, True, False, (0, 80, 100)), |
|
CityscapesClass('motorcycle', 32, 17, 'vehicle', 7, True, False, (0, 0, 230)), |
|
CityscapesClass('bicycle', 33, 18, 'vehicle', 7, True, False, (119, 11, 32)), |
|
CityscapesClass('license plate', -1, 255, 'vehicle', 7, False, True, (0, 0, 142)), |
|
] |
|
|
|
train_id_to_color = [c.color for c in classes if (c.train_id != -1 and c.train_id != 255)] |
|
train_id_to_color.append([0, 0, 0]) |
|
train_id_to_color = np.array(train_id_to_color) |
|
id_to_train_id = np.array([c.train_id for c in classes]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, root, split='train', mode='fine', target_type='semantic', transform=None): |
|
self.root = os.path.expanduser(root) |
|
self.mode = 'gtFine' |
|
self.target_type = target_type |
|
self.images_dir = os.path.join(self.root, 'leftImg8bit', split) |
|
|
|
self.targets_dir = os.path.join(self.root, self.mode, split) |
|
self.transform = transform |
|
|
|
self.split = split |
|
self.images = [] |
|
self.targets = [] |
|
|
|
if split not in ['train', 'test', 'val']: |
|
raise ValueError('Invalid split for mode! Please use split="train", split="test"' |
|
' or split="val"') |
|
|
|
if not os.path.isdir(self.images_dir) or not os.path.isdir(self.targets_dir): |
|
raise RuntimeError('Dataset not found or incomplete. Please make sure all required folders for the' |
|
' specified "split" and "mode" are inside the "root" directory') |
|
|
|
for city in os.listdir(self.images_dir): |
|
img_dir = os.path.join(self.images_dir, city) |
|
target_dir = os.path.join(self.targets_dir, city) |
|
|
|
for file_name in os.listdir(img_dir): |
|
self.images.append(os.path.join(img_dir, file_name)) |
|
target_name = '{}_{}'.format(file_name.split('_leftImg8bit')[0], |
|
self._get_target_suffix(self.mode, self.target_type)) |
|
self.targets.append(os.path.join(target_dir, target_name)) |
|
|
|
@classmethod |
|
def encode_target(cls, target): |
|
return cls.id_to_train_id[np.array(target)] |
|
|
|
@classmethod |
|
def decode_target(cls, target): |
|
target[target == 255] = 19 |
|
|
|
return cls.train_id_to_color[target] |
|
|
|
def __getitem__(self, index): |
|
""" |
|
Args: |
|
index (int): Index |
|
Returns: |
|
tuple: (image, target) where target is a tuple of all target types if target_type is a list with more |
|
than one item. Otherwise target is a json object if target_type="polygon", else the image segmentation. |
|
""" |
|
image = Image.open(self.images[index]).convert('RGB') |
|
target = Image.open(self.targets[index]) |
|
if self.transform: |
|
image, target = self.transform(image, target) |
|
target = self.encode_target(target) |
|
return image, target |
|
|
|
def __len__(self): |
|
return len(self.images) |
|
|
|
def _load_json(self, path): |
|
with open(path, 'r') as file: |
|
data = json.load(file) |
|
return data |
|
|
|
def _get_target_suffix(self, mode, target_type): |
|
if target_type == 'instance': |
|
return '{}_instanceIds.png'.format(mode) |
|
elif target_type == 'semantic': |
|
return '{}_labelIds.png'.format(mode) |
|
elif target_type == 'color': |
|
return '{}_color.png'.format(mode) |
|
elif target_type == 'polygon': |
|
return '{}_polygons.json'.format(mode) |
|
elif target_type == 'depth': |
|
return '{}_disparity.png'.format(mode) |